The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Allopurinol or oxypurinol in heart failure therapy - a promising new development or end of story?

The plasma level of the uric acid is frequently elevated in heart failure, due to increased production and/or to reduced renal excretion of this antioxidant metabolite. The transformation of hypoxanthine to xanthine and the conversion of the latter into uric acid, which occur in purine catabolism, are catalysed by xanthine oxidoreductase. The constitutive xanthine dehydrogenase form of this enzyme generally uses NAD(+) as an electron acceptor, whereas the post-translational xanthine oxidase form uses molecular oxygen and yields four units of reactive oxygen species per unit of transformed substrate. Allopurinol and oxypurinol inhibit xanthine oxidoreductase and thus diminish the generation of reactive species and decrease plasma uric acid. In a recent study in patients with NHYA class II-III heart failure, add-on treatment with allopurinol 300 mg/day for 3 months lowered plasma uric acid but failed to improve laboratory exercise performance or the distance walked in 6 minutes. In another recent trial, which was carried out in patients with NHYA class III-IV heart failure, add-on treatment with oxypurinol 600 mg/day for 24 weeks decreased plasma uric acid concentration but did not change a composite of patient outcome and state. These results indicate that the reduction in plasma uric acid caused by allopurinol or oxypurinol does not benefit patients with heart failure. Moreover, the hypothesis that the diminution in the renal excretion of the antioxidant uric acid caused by diuretics may be salutary in cardiac failure is strengthened by the study results considered.[1]

References

  1. Allopurinol or oxypurinol in heart failure therapy - a promising new development or end of story? Reyes, A.J., Leary, W.P. Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy. (2005) [Pubmed]
 
WikiGenes - Universities