The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Extracellular TNFR1 release requires the calcium-dependent formation of a nucleobindin 2-ARTS-1 complex.

Extracellular tumor necrosis factor (TNF) receptors function as TNF-binding proteins that modulate TNF activity. In human vascular endothelial cells (HUVEC), extracellular TNFR1 (type I TNF receptor, TNFRSF1A) is generated by two mechanisms, proteolytic cleavage of soluble TNFR1 ectodomains and the release of full-length 55-kDa TNFR1 in the membranes of exosome-like vesicles. TNFR1 release from HUVEC is known to involve the association between ARTS-1 (aminopeptidase regulator of TNFR1 shedding), an integral membrane aminopeptidase, and TNFR1. The goal of this study was to identify ARTS-1 binding partners that modulate TNFR1 release to the extracellular space. A yeast two-hybrid screen of a human placenta cDNA library showed that NUCB2 (nucleobindin 2), via its helix-loop-helix domains, binds the ARTS-1 extracellular domain. The association between endogenous ARTS-1 and NUCB2 in HUVEC was demonstrated by co-immunoprecipitation experiments, which showed the formation of a calcium-dependent NUCB2.ARTS-1 complex that associated with a subset of total cellular TNFR1. Confocal microscopy experiments demonstrated that this association involved a distinct population of NUCB2-containing intracytoplasmic vesicles. RNA interference was utilized to specifically knock down NUCB2 and ARTS-1 expression, which demonstrated that both are required for the constitutive release of a full-length 55-kDa TNFR1 within exosome-like vesicles as well as the inducible proteolytic cleavage of soluble TNFR1 ectodomains. We propose that calcium-dependent NUCB2.ARTS-1 complexes, which associate with TNFR1 prior to its commitment to pathways that result in either the constitutive release of TNFR1 exosome-like vesicles or the inducible proteolytic cleavage of TNFR1 ectodomains, play an important role in mediating TNFR1 release to the extracellular compartment.[1]

References

  1. Extracellular TNFR1 release requires the calcium-dependent formation of a nucleobindin 2-ARTS-1 complex. Islam, A., Adamik, B., Hawari, F.I., Ma, G., Rouhani, F.N., Zhang, J., Levine, S.J. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities