The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effect of satellite cell ablation on low-frequency-stimulated fast-to-slow fibre-type transitions in rat skeletal muscle.

The purpose of this study was to determine whether satellite cell ablation within rat fast-twitch muscles exposed to chronic low-frequency stimulation (CLFS) would limit fast-to-slow fibre-type transitions. Twenty-nine male Wistar rats were randomly assigned to one of three groups. Satellite cells of the left tibialis anterior were ablated by weekly exposure to a 25 Gy dose of gamma-irradiation during 21 days of CLFS (IRR-Stim), whilst a second group received only 21 days of CLFS (Stim). A third group received weekly doses of gamma-irradiation (IRR). Non-irradiated right legs served as internal controls. Continuous infusion of 5-bromo-2'-deoxyuridine (BrdU) revealed that CLFS induced an 8.0-fold increase in satellite cell proliferation over control (mean +/-s.e.m.: 23.9 +/- 1.7 versus 3.0 +/- 0.5 mm(-2), P < 0.0001) that was abolished by gamma-irradiation. M-cadherin and myogenin staining were also elevated 7.7- and 3.8-fold (P < 0.0001), respectively, in Stim compared with control, indicating increases in quiescent and terminally differentiating satellite cells; these increases were abolished by gamma-irradiation. Myonuclear content was elevated 3.3-fold (P < 0.0001) in Stim, but remained unchanged in IRR-Stim. Immunohistochemical analyses revealed attenuation of fast-to-slow fibre-type transitions in IRR-Stim compared with Stim. Comparable changes were observed at the protein level by SDS-PAGE. It is concluded that although considerable adaptive potential exists within myonuclei, satellite cells play a role in facilitating fast-to-slow fibre-type transitions.[1]

References

  1. Effect of satellite cell ablation on low-frequency-stimulated fast-to-slow fibre-type transitions in rat skeletal muscle. Martins, K.J., Gordon, T., Pette, D., Dixon, W.T., Foxcroft, G.R., Maclean, I.M., Putman, C.T. J. Physiol. (Lond.) (2006) [Pubmed]
 
WikiGenes - Universities