The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Differential cardiotoxic/cardioprotective effects of beta-adrenergic receptor subtypes in myocytes and fibroblasts in doxorubicin cardiomyopathy.

beta-Adrenoceptor (beta-AR) subtypes act through different signaling pathways to regulate cardiac function and remodeling. Previous in vivo data show a markedly enhanced cardiotoxic response to doxorubicin in beta2-/- mice, which is rescued by the additional deletion of the beta1-AR. We determined whether this differential response was myocyte specific by examining the effects of doxorubicin in myocytes and fibroblasts from WT and beta1, beta2 and beta1/beta2-/- mice. Cells were exposed to doxorubicin at 1-50 microM and viability and apoptosis assessed at 6, 24 and 48 h. WT myocytes showed a time and dose-dependent decrease in viability (42% decrease at 1 microM after 24 h). beta2-/- Myocytes showed a greater decrease in viability vs. WT (20.8% less at 6 h; 14% less at 24 h, P<0.05); beta1-/- and beta1/beta2-/- myocytes showed enhanced survival (beta1-/- 11%; beta1/beta2-/- 18% greater than WT, P<0.05). TUNEL staining demonstrated a similar differential susceptibility (WT 26% apoptotic nuclei, beta2-/- 45.9%, beta1/beta2-/- 16.8%, P<0.05). beta2-/- Fibroblasts also showed enhanced toxicity. Pertussis toxin pretreatment of WT cells decreased survival similar to the beta2-/-, suggesting a role for Gi signaling. JNK was differentially activated in beta2-/- myocytes after doxorubicin and its inhibition increased cardiotoxicity. In conclusion, the differential cardioprotective/cardiotoxic effects mediated by beta1 vs. beta2-AR subtypes in knockout mice are recapitulated in myocytes isolated from these mice. beta2-ARs appear to play a cardioprotective role, whereas beta1-ARs a cardiotoxic role.[1]


WikiGenes - Universities