The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling.

Gain-of-function mutations in SHP-2/PTPN11 cause Noonan syndrome, a human developmental disorder. Noonan syndrome is characterized by proportionate short stature, facial dysmorphia, increased risk of leukemia, and congenital heart defects in approximately 50% of cases. Congenital heart abnormalities are common in Noonan syndrome, but the signaling pathway(s) linking gain-of-function SHP-2 mutants to heart disease is unclear. Diverse cell types coordinate cardiac morphogenesis, which is regulated by calcium (Ca2+) and the nuclear factor of activated T-cells ( NFAT). It has been shown that the frequency of Ca2+ oscillations regulates NFAT activity. Here, we show that in fibroblasts, Ca2+ oscillations in response to FGF-2 require the phosphatase activity of SHP-2. Conversely, gain-of-function mutants of SHP-2 enhanced FGF-2-mediated Ca2+ oscillations in fibroblasts and spontaneous Ca2+ oscillations in cardiomyocytes. The enhanced frequency of cardiomyocyte Ca2+ oscillations induced by a gain-of-function SHP-2 mutant correlated with reduced nuclear translocation and transcriptional activity of NFAT. These data imply that gain-of-function SHP-2 mutants disrupt the Ca2+ oscillatory control of NFAT, suggesting a potential mechanism for congenital heart defects in Noonan syndrome.[1]

References

  1. Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling. Uhlén, P., Burch, P.M., Zito, C.I., Estrada, M., Ehrlich, B.E., Bennett, A.M. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
 
WikiGenes - Universities