The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Double knockout mice show BASH and PKCdelta have different epistatic relationships in B cell maturation and CD40-mediated activation.

The development and survival of mature B cells requires an antigen-independent signal from the B cell receptor (BCR) through an adaptor protein containing an SH2 domain, BASH (BLNK/SLP-65). It also requires signaling through BAFF and the BAFF receptor (BAFF-R), and is negatively regulated by protein kinase Cdelta (PKCdelta). In PKCdelta-deficient mice, B cell maturation occurs independently of the BAFF receptor (BAFF-R), indicating that BAFF-R signaling promotes maturation by inhibiting the negative function of PKCdelta. To clarify which of the two signaling pathways plays the primary role in B cell maturation, we crossed BASH-deficient mice with PKCdelta-deficient mice to generate BASH/PKCdelta-double knockout (DKO) mice. In the DKO mice, B cell maturation was blocked at the transitional type 1 (T1) stage and B cells were prone to apoptosis, in common with BASH-deficient mice. This indicates that BASH-mediated BCR signaling primarily controls B cell survival and maturation, with BAFF-R signaling and its inhibition of PKCdelta acting as a secondary regulator. By contrast, CD40-mediated proliferation and antibody production, which are low in BASH-deficient mice, were rescued in the DKO mice, indicating that the suppression of CD40-mediated B cell activation by PKCdelta is epistatic to BASH-mediated promotion. The physiological relevance of these opposing hierarchical effects of BASH and PKCdelta in the regulation of B cell maturation and activation is discussed.[1]

References

  1. Double knockout mice show BASH and PKCdelta have different epistatic relationships in B cell maturation and CD40-mediated activation. Nojima, T., Hayashi, K., Goitsuka, R., Nakayama, K., Nakayama, K., Kitamura, D. Immunol. Lett. (2006) [Pubmed]
 
WikiGenes - Universities