The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Bradykinin stimulates production of inositol (1,4,5) trisphosphate in cultured mesangial cells of the rat via a BK2-kinin receptor.

1. Using [125I-Tyr0]-BK, as radiolabelled ligand, and various agonists and antagonists of bradykinin (BK) we identified a single class of specific BK2-binding sites in mesangial cell membranes (Bmax = 73 fmol mg-1 protein and Kd = 3.7 nM). 2. Following the addition of 0.1 microM BK, inositol (1,4,5) trisphosphate (IP3) formation increased within 20 s from a basal level of 64 to a maximal value of 175 pmol mg-1 protein. 3. Incubation in a Ca(2+)-free medium did not change IP3 production but a 5 min preincubation with 1 mM EGTA completely prevented the BK-induced IP3 formation, suggesting that IP3 formation is partly dependent on extracellular calcium. 4. The BK2 antagonist D-Arg-Hyp3-D-Phe7-BK (10 microM) but not the BK1 antagonist (des-Arg9-Leu8-BK) abolished IP3 production in response to 0.1 microM BK. Pretreatment of mesangial cells with pertussis toxin was without effect on BK-induced IP3 formation, whereas phorbol 12-myristate 13-acetate significantly enhanced (by 25%) BK-induced IP3 formation. 5. The present data demonstrate that inositol phosphate breakdown in rat mesangial cells can be mediated via activation of a BK2-kinin receptor and is under negative control of protein-kinase C.[1]

References

  1. Bradykinin stimulates production of inositol (1,4,5) trisphosphate in cultured mesangial cells of the rat via a BK2-kinin receptor. Bascands, J.L., Emond, C., Pecher, C., Regoli, D., Girolami, J.P. Br. J. Pharmacol. (1991) [Pubmed]
 
WikiGenes - Universities