The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Why photoreceptors die (and why they don't).

Light can kill the photoreceptors of the eye, not only very bright direct sunlight, but more moderate illumination if the light is present continuously. Recent experiments show that rod apoptosis can be triggered by strong and constant activation of transduction, and that death can be prevented if transduction is inhibited even though the eye is illuminated. Vitamin A deficiency and genetically inherited diseases, such as some forms of retinitis pigmentosa and Leber congenital amaurosis, appear to kill like this: transduction is activated at a high rate and continuously, and this causes the rods to die. Why does transduction kill? Our best guess is that continuous activation produces a prolonged lowering of the Ca(2+) concentration, which is also thought to kill neurons in tissue culture and during the development of the nervous system. To prevent death in constant light, rods have evolved protective mechanisms including modulation of channels and ion transport to keep the Ca(2+) from going too low. Prolonged light exposure also causes migration of transduction proteins from one part of the cell to another and a reversible shortening of the rod outer segments, the part of the cell that contains the pigment rhodopsin. All of these mechanisms are at work in the normal eye to reduce transduction and prevent the Ca(2+) concentration from dropping too low for too long a time. That most of us retain our vision our entire lives is a testament to their effectiveness.[1]


  1. Why photoreceptors die (and why they don't). Fain, G.L. Bioessays (2006) [Pubmed]
WikiGenes - Universities