The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

LCA5  -  Leber congenital amaurosis 5

Homo sapiens

This record was replaced with 167691.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of LCA5

  • Progression of phenotype in Leber's congenital amaurosis with a mutation at the LCA5 locus [1].
  • Simultaneous screening for all known LCA-associated variants in large LCA cohorts allows systematic detection and analysis of genetic variation, facilitating prospective diagnosis and ultimately predicting disease progression [2].
  • The first one includes patients whose symptoms fit the traditional definition of LCA, i.e., congenital or very early cone-rod dystrophy, while the second group gathers patients affected with severe yet progressive rod-cone dystrophy [3].
  • Overall, our cohort of LCA carriers did not describe significant subjective visual difficulties, including nyctalopia and/or photosensitivity [4].
  • Macular coloboma-type LCA shows genetic heterogeneity and it is not possible to establish a phenotype-genotype correlation with LCA5 and macular coloboma [5].

Psychiatry related information on LCA5


High impact information on LCA5


Biological context of LCA5


Anatomical context of LCA5


Associations of LCA5 with chemical compounds


Regulatory relationships of LCA5


Other interactions of LCA5

  • A genome-wide screen for homozygosity was conducted in a large consanguineous family originating from Palestine, for which no mutation was found in any of the six known LCA genes and that excluded the LCA3 and LCA5 loci [20].
  • The resultant LCA array allows simultaneous detection of all known disease-associated alleles in any patient with early-onset RP [2].
  • Pathogenic GUCY2D mutations result in the most severe form of LCA [21].
  • Mutations in CRB1, and to a lesser extent, in GUCY2D, underlie most LCA cases in this cohort [21].
  • Complete exon-intron structure of the RPGR-interacting protein (RPGRIP1) gene allows the identification of mutations underlying Leber congenital amaurosis [22].

Analytical, diagnostic and therapeutic context of LCA5


  1. Progression of phenotype in Leber's congenital amaurosis with a mutation at the LCA5 locus. Mohamed, M.D., Topping, N.C., Jafri, H., Raashed, Y., McKibbin, M.A., Inglehearn, C.F. The British journal of ophthalmology. (2003) [Pubmed]
  2. Genotyping microarray (disease chip) for Leber congenital amaurosis: detection of modifier alleles. Zernant, J., Külm, M., Dharmaraj, S., den Hollander, A.I., Perrault, I., Preising, M.N., Lorenz, B., Kaplan, J., Cremers, F.P., Maumenee, I., Koenekoop, R.K., Allikmets, R. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  3. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hanein, S., Perrault, I., Gerber, S., Tanguy, G., Barbet, F., Ducroq, D., Calvas, P., Dollfus, H., Hamel, C., Lopponen, T., Munier, F., Santos, L., Shalev, S., Zafeiriou, D., Dufier, J.L., Munnich, A., Rozet, J.M., Kaplan, J. Hum. Mutat. (2004) [Pubmed]
  4. Clinical phenotypes in carriers of Leber congenital amaurosis mutations. Galvin, J.A., Fishman, G.A., Stone, E.M., Koenekoop, R.K. Ophthalmology (2005) [Pubmed]
  5. Exclusion of LCA5 locus in a consanguineous Turkish family with macular coloboma-type LCA. Ozgül, R.K., Bozkurt, B., Kiratli, H., Oğüş, A. Eye (London, England) (2006) [Pubmed]
  6. New autosomal-recessive syndrome of Leber congenital amaurosis, short stature, growth hormone insufficiency, mental retardation, hepatic dysfunction, and metabolic acidosis. Ehara, H., Nakano, C., Ohno, K., Goto, Y.I., Takeshita, K. Am. J. Med. Genet. (1997) [Pubmed]
  7. Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Jin, M., Li, S., Moghrabi, W.N., Sun, H., Travis, G.H. Cell (2005) [Pubmed]
  8. Gene therapy restores vision in a canine model of childhood blindness. Acland, G.M., Aguirre, G.D., Ray, J., Zhang, Q., Aleman, T.S., Cideciyan, A.V., Pearce-Kelling, S.E., Anand, V., Zeng, Y., Maguire, A.M., Jacobson, S.G., Hauswirth, W.W., Bennett, J. Nat. Genet. (2001) [Pubmed]
  9. De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. Freund, C.L., Wang, Q.L., Chen, S., Muskat, B.L., Wiles, C.D., Sheffield, V.C., Jacobson, S.G., McInnes, R.R., Zack, D.J., Stone, E.M. Nat. Genet. (1998) [Pubmed]
  10. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Gu, S.M., Thompson, D.A., Srikumari, C.R., Lorenz, B., Finckh, U., Nicoletti, A., Murthy, K.R., Rathmann, M., Kumaramanickavel, G., Denton, M.J., Gal, A. Nat. Genet. (1997) [Pubmed]
  11. Molecular genetics of Leber congenital amaurosis. Cremers, F.P., van den Hurk, J.A., den Hollander, A.I. Hum. Mol. Genet. (2002) [Pubmed]
  12. Mutation screening of Pakistani families with congenital eye disorders. Khaliq, S., Abid, A., Hameed, A., Anwar, K., Mohyuddin, A., Azmat, Z., Shami, S.A., Ismail, M., Mehdi, S.Q. Exp. Eye Res. (2003) [Pubmed]
  13. Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Izaddoost, S., Nam, S.C., Bhat, M.A., Bellen, H.J., Choi, K.W. Nature (2002) [Pubmed]
  14. The Leber congenital amaurosis gene product AIPL1 is localized exclusively in rod photoreceptors of the adult human retina. van der Spuy, J., Chapple, J.P., Clark, B.J., Luthert, P.J., Sethi, C.S., Cheetham, M.E. Hum. Mol. Genet. (2002) [Pubmed]
  15. Clinicopathologic effects of mutant GUCY2D in Leber congenital amaurosis. Milam, A.H., Barakat, M.R., Gupta, N., Rose, L., Aleman, T.S., Pianta, M.J., Cideciyan, A.V., Sheffield, V.C., Stone, E.M., Jacobson, S.G. Ophthalmology (2003) [Pubmed]
  16. Identifying photoreceptors in blind eyes caused by RPE65 mutations: Prerequisite for human gene therapy success. Jacobson, S.G., Aleman, T.S., Cideciyan, A.V., Sumaroka, A., Schwartz, S.B., Windsor, E.A., Traboulsi, E.I., Heon, E., Pittler, S.J., Milam, A.H., Maguire, A.M., Palczewski, K., Stone, E.M., Bennett, J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  17. Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis-associated mutations. Roepman, R., Letteboer, S.J., Arts, H.H., van Beersum, S.E., Lu, X., Krieger, E., Ferreira, P.A., Cremers, F.P. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  18. Why photoreceptors die (and why they don't). Fain, G.L. Bioessays (2006) [Pubmed]
  19. Mutation screening of patients with Leber Congenital Amaurosis or the enhanced S-Cone Syndrome reveals a lack of sequence variations in the NRL gene. Acar, C., Mears, A.J., Yashar, B.M., Maheshwary, A.S., Andreasson, S., Baldi, A., Sieving, P.A., Iannaccone, A., Musarella, M.A., Jacobson, S.G., Swaroop, A. Mol. Vis. (2003) [Pubmed]
  20. A novel mutation disrupting the cytoplasmic domain of CRB1 in a large consanguineous family of Palestinian origin affected with Leber congenital amaurosis. Gerber, S., Perrault, I., Hanein, S., Shalev, S., Zlotogora, J., Barbet, F., Ducroq, D., Dufier, J., Munnich, A., Rozet, J., Kaplan, J. Ophthalmic Genet. (2002) [Pubmed]
  21. Microarray-based mutation detection and phenotypic characterization of patients with Leber congenital amaurosis. Yzer, S., Leroy, B.P., De Baere, E., de Ravel, T.J., Zonneveld, M.N., Voesenek, K., Kellner, U., Ciriano, J.P., de Faber, J.T., Rohrschneider, K., Roepman, R., den Hollander, A.I., Cruysberg, J.R., Meire, F., Casteels, I., van Moll-Ramirez, N.G., Allikmets, R., van den Born, L.I., Cremers, F.P. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  22. Complete exon-intron structure of the RPGR-interacting protein (RPGRIP1) gene allows the identification of mutations underlying Leber congenital amaurosis. Gerber, S., Perrault, I., Hanein, S., Barbet, F., Ducroq, D., Ghazi, I., Martin-Coignard, D., Leowski, C., Homfray, T., Dufier, J.L., Munnich, A., Kaplan, J., Rozet, J.M. Eur. J. Hum. Genet. (2001) [Pubmed]
  23. An overview of Leber congenital amaurosis: a model to understand human retinal development. Koenekoop, R.K. Survey of ophthalmology. (2004) [Pubmed]
  24. In vivo gene therapy in young and adult RPE65-/- dogs produces long-term visual improvement. Narfström, K., Katz, M.L., Ford, M., Redmond, T.M., Rakoczy, E., Bragadóttir, R. J. Hered. (2003) [Pubmed]
  25. Peroxisomal dysfunction in a boy with neurologic symptoms and amaurosis (Leber disease): clinical and biochemical findings similar to those observed in Zellweger syndrome. Ek, J., Kase, B.F., Reith, A., Björkhem, I., Pedersen, J.I. J. Pediatr. (1986) [Pubmed]
WikiGenes - Universities