The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

RHO  -  rhodopsin

Homo sapiens

Synonyms: CSNBAD1, OPN2, Opsin-2, RP4, Rhodopsin
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of RHO


Psychiatry related information on RHO

  • At light intensities bleaching from 160 to 5.6 X 10(6) rhodopsin molecules/rod/s, decreases in the response latency for the cGMP kinetics parallel decreases in the latent period of the electrical response [6].
  • Transducin interactions with rhodopsin. Evidence for positive cooperative behavior [7].
  • The performance decrement in the blue cone monochromats was probably not associated with rod saturation, as the field action spectrum to cause a just-noticeable-difference (jnd) decrement in discrimination was poorly fitted by a rhodopsin action spectrum [8].

High impact information on RHO

  • All of these are seven-transmembrane-domain rhodopsin-like G protein-coupled receptors [9].
  • Moreover, the high expression level of rhodopsin in the retina, its specific localization in the internal disks of the photoreceptor structures [termed rod outer segments (ROS)], and the lack of other highly abundant membrane proteins allow rhodopsin to be examined in the native disk membranes by a number of methods [10].
  • Future high-resolution structural studies of rhodopsin and other GPCRs will form a basis to elucidate the detailed molecular mechanism of GPCR-mediated signal transduction [11].
  • The ligand-binding pocket of rhodopsin is remarkably compact, and several apparent chromophore-protein interactions were not predicted from extensive mutagenesis or spectroscopic studies [11].
  • The change in free Ca(2+) is believed to have a variety of effects on the transduction mechanism, including modulation of the rate of the guanylyl cyclase and rhodopsin kinase, alteration of the gain of the transduction cascade, and regulation of the affinity of the outer segment channels for cGMP [12].

Chemical compound and disease context of RHO

  • We show here that the mutation Gly 90-->Asp (G90D) in the second transmembrane segment of rhodopsin, which causes congenital night blindness, also constitutively activates opsin [13].
  • In exon 1 at codon 23 of the rhodopsin gene, a mutation resulting in a proline-to-histidine substitution has previously been observed in approximately 12% of American autosomal dominant retinitis pigmentosa (ADRP) patients [14].
  • In an examination of the effect of three rhodopsin night blindness mutations on the rate of association of 11-cis-retinal with opsin, one of the mutations (G90D) was found to slow the rate of reaction by more than 80-fold [15].
  • When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin [16].
  • Binding of T alpha to rhodopsin and the ADP-ribosylation of T alpha by pertussis toxin, both of which are enhanced in the presence of T beta gamma, were inhibited by vanadate [17].

Biological context of RHO


Anatomical context of RHO


Associations of RHO with chemical compounds


Physical interactions of RHO

  • Last, we show that mutation of the hydrophobic residues severely diminishes phospholipid-dependent autophosphorylation of GRK5 and phosphorylation of membrane-bound rhodopsin by GRK5 [29].
  • These results suggest that autophosphorylation plays an important role in regulating the binding of RK to Rho and that the binding sites of RK and arrestin overlap at least partially [30].
  • Complex formation between the heterotrimer and activated rhodopsin leads to a dramatic change in R1 motion at residue 217 in the receptor-binding alpha2/beta4 loop and smaller allosteric changes at the Galphai1-Gbetagamma interface distant from the receptor binding surface [31].
  • We report here the NMR structure of Ca(2+)-bound recoverin bound to a functional N-terminal fragment of rhodopsin kinase (residues 1-25, called RK25) [32].
  • Purified beta-arrestin bound to rhodopsin in a phosphorylation-dependent plus light-dependent manner [33].

Enzymatic interactions of RHO

  • GRK1 phosphorylates photoactivated rhodopsin, initiating steps in its deactivation [34].
  • Recombinant human GRK7 catalyzes rhodopsin phosphorylation in a light dependent manner [35].
  • Truncation of the C-terminal domain or deletion of the conserved region in this domain of GRK2 resulted in a complete loss of its ability to phosphorylate rhodopsin and in an obvious decrease in its sensitivity to receptor-mediated phosphorylation of a peptide substrate [36].
  • Binding studies revealed no binding of cArr to rhodopsin regardless of whether it was bleached and/or phosphorylated. cArr also failed to bind to heparin-Sepharose under conditions which rod arrestin (rArr) bound to the column [37].
  • In the early steps of visual signal transduction, light-activated rhodopsin (R*) catalyzes GDP/GTP exchange in the heterotrimeric G protein (Galphabetagamma) transducin [38].

Regulatory relationships of RHO


Other interactions of RHO

  • Calcium-dependent inhibition of rhodopsin kinase by recoverin represents one of the mechanisms that control adaptation to light [43].
  • GRK6, overexpressed in Sf9 insect cells using the baculovirus system, was able to phosphorylate both the beta 2-adrenergic receptor and rhodopsin in a stimulus-dependent fashion, although it was significantly less active then beta ARK on these substrates [19].
  • The identification herein of three putative receptor kinases indicates that in addition to beta ARK and rhodopsin kinase subfamilies, there are other receptor-kinase subfamilies that regulate the broad spectrum of G-protein-coupled receptors [44].
  • Gene profiling of FACS-purified photoreceptors confirmed the role of NR2E3 as a strong suppressor of cone genes but an activator of only a subset of rod genes (including rhodopsin) in vivo [45].
  • An intact N terminus of the gamma subunit is required for the Gbetagamma stimulation of rhodopsin phosphorylation by human beta-adrenergic receptor kinase-1 but not for kinase binding [46].

Analytical, diagnostic and therapeutic context of RHO


  1. Cloning and expression of GRK5: a member of the G protein-coupled receptor kinase family. Kunapuli, P., Benovic, J.L. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  2. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Dryja, T.P., Berson, E.L., Rao, V.R., Oprian, D.D. Nat. Genet. (1993) [Pubmed]
  3. Autosomal dominant retinitis pigmentosa: no evidence for nonallelic genetic heterogeneity on 3q. Kumar-Singh, R., Wang, H., Humphries, P., Farrar, G.J. Am. J. Hum. Genet. (1993) [Pubmed]
  4. Dark-light: model for nightblindness from the human rhodopsin Gly-90-->Asp mutation. Sieving, P.A., Richards, J.E., Naarendorp, F., Bingham, E.L., Scott, K., Alpern, M. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  5. A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. Illing, M.E., Rajan, R.S., Bence, N.F., Kopito, R.R. J. Biol. Chem. (2002) [Pubmed]
  6. Changes in cGMP concentration correlate with some, but not all, aspects of the light-regulated conductance of frog rod photoreceptors. Cote, R.H., Nicol, G.D., Burke, S.A., Bownds, M.D. J. Biol. Chem. (1986) [Pubmed]
  7. Transducin interactions with rhodopsin. Evidence for positive cooperative behavior. Wessling-Resnick, M., Johnson, G.L. J. Biol. Chem. (1987) [Pubmed]
  8. Wavelength discrimination deteriorates with illumination in blue cone monochromats. Young, R.S., Price, J. Invest. Ophthalmol. Vis. Sci. (1985) [Pubmed]
  9. The molecular biology of leukocyte chemoattractant receptors. Murphy, P.M. Annu. Rev. Immunol. (1994) [Pubmed]
  10. G protein-coupled receptor rhodopsin. Palczewski, K. Annu. Rev. Biochem. (2006) [Pubmed]
  11. Rhodopsin: structural basis of molecular physiology. Menon, S.T., Han, M., Sakmar, T.P. Physiol. Rev. (2001) [Pubmed]
  12. Adaptation in vertebrate photoreceptors. Fain, G.L., Matthews, H.R., Cornwall, M.C., Koutalos, Y. Physiol. Rev. (2001) [Pubmed]
  13. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Rao, V.R., Cohen, G.B., Oprian, D.D. Nature (1994) [Pubmed]
  14. Autosomal dominant retinitis pigmentosa: absence of the rhodopsin proline----histidine substitution (codon 23) in pedigrees from Europe. Farrar, G.J., Kenna, P., Redmond, R., McWilliam, P., Bradley, D.G., Humphries, M.M., Sharp, E.M., Inglehearn, C.F., Bashir, R., Jay, M. Am. J. Hum. Genet. (1990) [Pubmed]
  15. Slow binding of retinal to rhodopsin mutants G90D and T94D. Gross, A.K., Xie, G., Oprian, D.D. Biochemistry (2003) [Pubmed]
  16. ADP-ribosylation of transducin by pertussis toxin. Watkins, P.A., Burns, D.L., Kanaho, Y., Liu, T.Y., Hewlett, E.L., Moss, J. J. Biol. Chem. (1985) [Pubmed]
  17. Mechanism of inhibition of transducin guanosine triphosphatase activity by vanadate. Kanaho, Y., Chang, P.P., Moss, J., Vaughan, M. J. Biol. Chem. (1988) [Pubmed]
  18. G-protein-coupled receptor kinase activity is increased in hypertension. Gros, R., Benovic, J.L., Tan, C.M., Feldman, R.D. J. Clin. Invest. (1997) [Pubmed]
  19. Molecular cloning and expression of GRK6. A new member of the G protein-coupled receptor kinase family. Benovic, J.L., Gomez, J. J. Biol. Chem. (1993) [Pubmed]
  20. Rhodopsin phosphorylation by transiently expressed human beta ARK1: a new method for drug development. Parruti, G., Lombardi, M.S., Chuang, T.T., De Blasi, A. J. Recept. Res. (1993) [Pubmed]
  21. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Dryja, T.P., McGee, T.L., Reichel, E., Hahn, L.B., Cowley, G.S., Yandell, D.W., Sandberg, M.A., Berson, E.L. Nature (1990) [Pubmed]
  22. Decreased expression and activity of G-protein-coupled receptor kinases in peripheral blood mononuclear cells of patients with rheumatoid arthritis. Lombardi, M.S., Kavelaars, A., Schedlowski, M., Bijlsma, J.W., Okihara, K.L., Van de Pol, M., Ochsmann, S., Pawlak, C., Schmidt, R.E., Heijnen, C.J. FASEB J. (1999) [Pubmed]
  23. The amino terminus with a conserved glutamic acid of G protein-coupled receptor kinases is indispensable for their ability to phosphorylate photoactivated rhodopsin. Yu, Q.M., Cheng, Z.J., Gan, X.Q., Bao, G.B., Li, L., Pei, G. J. Neurochem. (1999) [Pubmed]
  24. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. Dryja, T.P., McGee, T.L., Hahn, L.B., Cowley, G.S., Olsson, J.E., Reichel, E., Sandberg, M.A., Berson, E.L. N. Engl. J. Med. (1990) [Pubmed]
  25. Structural and functional impairment of endocytic pathways by retinitis pigmentosa mutant rhodopsin-arrestin complexes. Chuang, J.Z., Vega, C., Jun, W., Sung, C.H. J. Clin. Invest. (2004) [Pubmed]
  26. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Dryja, T.P., Hahn, L.B., Cowley, G.S., McGee, T.L., Berson, E.L. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  27. Cardiopulmonary bypass decreases G protein-coupled receptor kinase activity and expression in human peripheral blood mononuclear cells. Hagen, S.A., Kondyra, A.L., Grocott, H.P., El-Moalem, H., Bainbridge, D., Mathew, J.P., Newman, M.F., Reves, J.G., Schwinn, D.A., Kwatra, M.M. Anesthesiology (2003) [Pubmed]
  28. Rhodopsin mutants that bind but fail to activate transducin. Franke, R.R., König, B., Sakmar, T.P., Khorana, H.G., Hofmann, K.P. Science (1990) [Pubmed]
  29. A predicted amphipathic helix mediates plasma membrane localization of GRK5. Thiyagarajan, M.M., Stracquatanio, R.P., Pronin, A.N., Evanko, D.S., Benovic, J.L., Wedegaertner, P.B. J. Biol. Chem. (2004) [Pubmed]
  30. Regulation of rhodopsin kinase by autophosphorylation. Buczyłko, J., Gutmann, C., Palczewski, K. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  31. Structural and dynamical changes in an {alpha}-subunit of a heterotrimeric G protein along the activation pathway. Van Eps, N., Oldham, W.M., Hamm, H.E., Hubbell, W.L. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  32. Structural Basis for Calcium-induced Inhibition of Rhodopsin Kinase by Recoverin. Ames, J.B., Levay, K., Wingard, J.N., Lusin, J.D., Slepak, V.Z. J. Biol. Chem. (2006) [Pubmed]
  33. Binding of purified recombinant beta-arrestin to guanine-nucleotide-binding-protein-coupled receptors. Söhlemann, P., Hekman, M., Puzicha, M., Buchen, C., Lohse, M.J. Eur. J. Biochem. (1995) [Pubmed]
  34. Molecular forms of human rhodopsin kinase (GRK1). Zhao, X., Huang, J., Khani, S.C., Palczewski, K. J. Biol. Chem. (1998) [Pubmed]
  35. Characterization of human GRK7 as a potential cone opsin kinase. Chen, C.K., Zhang, K., Church-Kopish, J., Huang, W., Zhang, H., Chen, Y.J., Frederick, J.M., Baehr, W. Mol. Vis. (2001) [Pubmed]
  36. Interaction between the conserved region in the C-terminal domain of GRK2 and rhodopsin is necessary for GRK2 to catalyze receptor phosphorylation. Gan, X.Q., Wang, J.Y., Yang, Q.H., Li, Z., Liu, F., Pei, G., Li, L. J. Biol. Chem. (2000) [Pubmed]
  37. Purification and characterization of bovine cone arrestin (cArr). Maeda, T., Ohguro, H., Sohma, H., Kuroki, Y., Wada, H., Okisaka, S., Murakami, A. FEBS Lett. (2000) [Pubmed]
  38. Rhodopsin-transducin coupling: Role of the Galpha C-terminus in nucleotide exchange catalysis. Herrmann, R., Heck, M., Henklein, P., Kleuss, C., Wray, V., Hofmann, K.P., Ernst, O.P. Vision Res. (2006) [Pubmed]
  39. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Cideciyan, A.V., Zhao, X., Nielsen, L., Khani, S.C., Jacobson, S.G., Palczewski, K. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  40. The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin-transducin interaction. Marin, E.P., Krishna, A.G., Zvyaga, T.A., Isele, J., Siebert, F., Sakmar, T.P. J. Biol. Chem. (2000) [Pubmed]
  41. Opioid receptor random mutagenesis reveals a mechanism for G protein-coupled receptor activation. Décaillot, F.M., Befort, K., Filliol, D., Yue, S., Walker, P., Kieffer, B.L. Nat. Struct. Biol. (2003) [Pubmed]
  42. Light-regulated biochemical events in invertebrate photoreceptors. 1. Light-activated guanosinetriphosphatase, guanine nucleotide binding, and cholera toxin catalyzed labeling of squid photoreceptor membranes. Vandenberg, C.A., Montal, M. Biochemistry (1984) [Pubmed]
  43. Regulation of G-protein-coupled receptor kinase subtypes by calcium sensor proteins. Iacovelli, L., Sallese, M., Mariggiò, S., de Blasi, A. FASEB J. (1999) [Pubmed]
  44. Identification of additional members of human G-protein-coupled receptor kinase multigene family. Haribabu, B., Snyderman, R. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  45. In vivo function of the orphan nuclear receptor NR2E3 in establishing photoreceptor identity during mammalian retinal development. Cheng, H., Aleman, T.S., Cideciyan, A.V., Khanna, R., Jacobson, S.G., Swaroop, A. Hum. Mol. Genet. (2006) [Pubmed]
  46. An intact N terminus of the gamma subunit is required for the Gbetagamma stimulation of rhodopsin phosphorylation by human beta-adrenergic receptor kinase-1 but not for kinase binding. Haske, T.N., DeBlasi, A., LeVine, H. J. Biol. Chem. (1996) [Pubmed]
  47. Expression and activity of g protein-coupled receptor kinases in differentiated thyroid carcinoma. Métayé, T., Menet, E., Guilhot, J., Kraimps, J.L. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  48. Identification of novel rhodopsin mutations associated with retinitis pigmentosa by GC-clamped denaturing gradient gel electrophoresis. Sheffield, V.C., Fishman, G.A., Beck, J.S., Kimura, A.E., Stone, E.M. Am. J. Hum. Genet. (1991) [Pubmed]
  49. Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain. Sung, C.H., Davenport, C.M., Nathans, J. J. Biol. Chem. (1993) [Pubmed]
  50. Autophosphorylation and ADP regulate the Ca2+-dependent interaction of recoverin with rhodopsin kinase. Satpaev, D.K., Chen, C.K., Scotti, A., Simon, M.I., Hurley, J.B., Slepak, V.Z. Biochemistry (1998) [Pubmed]
  51. Sequence analysis of the 5.34-kb 5' flanking region of the human rhodopsin-encoding gene. Bennett, J., Sun, D., Karikó, K. Gene (1995) [Pubmed]
WikiGenes - Universities