The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Rod Outer Segments

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Rod Outer Segments


High impact information on Rod Outer Segments


Chemical compound and disease context of Rod Outer Segments


Biological context of Rod Outer Segments


Anatomical context of Rod Outer Segments

  • Light absorption by photoreceptor rod outer segments (ROS) leads not only to spectral and structural changes in the rhodopsin molecule but also to the activation of several enzymatic activities including GTPase [16].
  • Retinol isomerase is concentrated in the pigment epithelium; this localization clarifies the role of this tissue in rhodopsin regeneration and explains the need to transfer all-trans retinol from the rod outer segments to the pigment epithelium during the visual cycle [17].
  • Taking advantage of the high and reproducible yield of T gamma from the column, we analyzed the composition of T gamma subspecies in the T alpha-T beta gamma complex which did not bind with transducin-depleted rod outer segment membranes containing metarhodopsin II [18].
  • Rhodopsin-to-metarhodopsin II transition triggers amplified changes in cytosol ATP and ADP in intact retinal rod outer segments [19].
  • Photoexcitation of retinal rod photoreceptor cells involves the activation of cGMP enzyme cascade in which sequential activation of rhodopsin, transducin, and the cGMP phosphodiesterase in the rod outer segment constitutes the signal amplification mechanism [20].

Associations of Rod Outer Segments with chemical compounds

  • Cyclic GMP can increase rod outer-segment light-sensitive current 10-fold without delay of excitation [21].
  • We show here that the guanylate cyclase activity of unilluminated bovine rod outer segments increases markedly (5 to 20-fold) when the calcium level is lowered from 200 nM to 50 nM [22].
  • 11-Cis vitamin A in dark-adapted rod outer segments is a probable source of prosthetic groups for rhodopsin biosynthesis [23].
  • To test this idea electrophysiologically, we have injected purified GTP-binding protein that was binding a hydrolysis-resistant analogue of GTP, guanylyl imidodiphosphate (p(NH)ppG), termed Gp(NH)ppG, as well as partially purified PDE, into toad rod outer segments while recording membrane voltage [24].
  • The 48K protein, a soluble protein found in rod outer segments, is purified through its specific binding to photoexcited rhodopsin and is involved in the quenching of light-induced guanosine 3',5'-monophosphate-phosphodiesterase activity [25].

Gene context of Rod Outer Segments


Analytical, diagnostic and therapeutic context of Rod Outer Segments


  1. Rethinking the role of phosducin: light-regulated binding of phosducin to 14-3-3 in rod inner segments. Nakano, K., Chen, J., Tarr, G.E., Yoshida, T., Flynn, J.M., Bitensky, M.W. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  2. Inhibition of bovine rod outer segment GTPase by Bordetella pertussis toxin. Watkins, P.A., Moss, J., Burns, D.L., Hewlett, E.L., Vaughan, M. J. Biol. Chem. (1984) [Pubmed]
  3. Sorbitol, myo-inositol, and rod outer segment phagocytosis in cultured hRPE cells exposed to glucose. In vitro model of myo-inositol depletion hypothesis of diabetic complications. Del Monte, M.A., Rabbani, R., Diaz, T.C., Lattimer, S.A., Nakamura, J., Brennan, M.C., Greene, D.A. Diabetes (1991) [Pubmed]
  4. CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. Ryeom, S.W., Sparrow, J.R., Silverstein, R.L. J. Cell. Sci. (1996) [Pubmed]
  5. Detection of nearest neighbors to specific fluorescently tagged ligands in rod outer segment and lymphocyte plasma membranes by photosensitization of 5-iodonaphthyl 1-azide. Raviv, Y., Bercovici, T., Gitler, C., Salomon, Y. Biochemistry (1989) [Pubmed]
  6. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice. Weng, J., Mata, N.L., Azarian, S.M., Tzekov, R.T., Birch, D.G., Travis, G.H. Cell (1999) [Pubmed]
  7. Stargardt's ABCR is localized to the disc membrane of retinal rod outer segments. Sun, H., Nathans, J. Nat. Genet. (1997) [Pubmed]
  8. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Hsu, Y.T., Molday, R.S. Nature (1993) [Pubmed]
  9. Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods. Kawamura, S., Murakami, M. Nature (1991) [Pubmed]
  10. Diffusion coefficient of the cyclic GMP analog 8-(fluoresceinyl)thioguanosine 3',5' cyclic monophosphate in the salamander rod outer segment. Koutalos, Y., Brown, R.L., Karpen, J.W., Yau, K.W. Biophys. J. (1995) [Pubmed]
  11. Role of light and rhodopsin phosphorylation in control of permeability of retinal rod outer segment disks to Ca2plus. Weller, M., Virmaux, N., Mandel, P. Nature (1975) [Pubmed]
  12. RGS9, a GTPase accelerator for phototransduction. He, W., Cowan, C.W., Wensel, T.G. Neuron (1998) [Pubmed]
  13. Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin. Fliesler, S.J., Rayborn, M.E., Hollyfield, J.G. J. Cell Biol. (1985) [Pubmed]
  14. Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization. Finnemann, S.C., Bonilha, V.L., Marmorstein, A.D., Rodriguez-Boulan, E. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  15. Methylation and demethylation reactions of guanine nucleotide-binding proteins of retinal rod outer segments. Pérez-Sala, D., Tan, E.W., Cañada, F.J., Rando, R.R. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  16. Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes. Kühn, H. Nature (1980) [Pubmed]
  17. The visual cycle operates via an isomerase acting on all-trans retinol in the pigment epithelium. Bridges, C.D., Alvarez, R.A. Science (1987) [Pubmed]
  18. Carboxyl methylation and farnesylation of transducin gamma-subunit synergistically enhance its coupling with metarhodopsin II. Ohguro, H., Fukada, Y., Takao, T., Shimonishi, Y., Yoshizawa, T., Akino, T. EMBO J. (1991) [Pubmed]
  19. Rhodopsin-to-metarhodopsin II transition triggers amplified changes in cytosol ATP and ADP in intact retinal rod outer segments. Zuckerman, R., Schmidt, G.J., Dacko, S.M. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  20. Regulation of retinal cGMP cascade by phosducin in bovine rod photoreceptor cells. Interaction of phosducin and transducin. Lee, R.H., Ting, T.D., Lieberman, B.S., Tobias, D.E., Lolley, R.N., Ho, Y.K. J. Biol. Chem. (1992) [Pubmed]
  21. Cyclic GMP can increase rod outer-segment light-sensitive current 10-fold without delay of excitation. Cobbs, W.H., Pugh, E.N. Nature (1985) [Pubmed]
  22. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Koch, K.W., Stryer, L. Nature (1988) [Pubmed]
  23. 11-Cis vitamin A in dark-adapted rod outer segments is a probable source of prosthetic groups for rhodopsin biosynthesis. Bridges, C.D. Nature (1976) [Pubmed]
  24. Injection of GTP-binding protein or cyclic GMP phosphodiesterase hyperpolarizes retinal rods. Clack, J.W., Oakley, B., Stein, P.J. Nature (1983) [Pubmed]
  25. Retinal S antigen identified as the 48K protein regulating light-dependent phosphodiesterase in rods. Pfister, C., Chabre, M., Plouet, J., Tuyen, V.V., De Kozak, Y., Faure, J.P., Kühn, H. Science (1985) [Pubmed]
  26. Photoreceptor peripherin is the normal product of the gene responsible for retinal degeneration in the rds mouse. Connell, G., Bascom, R., Molday, L., Reid, D., McInnes, R.R., Molday, R.S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  27. Localization of guanylate cyclase-activating protein 2 in mammalian retinas. Otto-Bruc, A., Fariss, R.N., Haeseleer, F., Huang, J., Buczyłko, J., Surgucheva, I., Baehr, W., Milam, A.H., Palczewski, K. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  28. Recoverin and rhodopsin kinase activity in detergent-resistant membrane rafts from rod outer segments. Senin, I.I., Höppner-Heitmann, D., Polkovnikova, O.O., Churumova, V.A., Tikhomirova, N.K., Philippov, P.P., Koch, K.W. J. Biol. Chem. (2004) [Pubmed]
  29. Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse. Sokolov, M., Strissel, K.J., Leskov, I.B., Michaud, N.A., Govardovskii, V.I., Arshavsky, V.Y. J. Biol. Chem. (2004) [Pubmed]
  30. Phosphorylation of GRK1 and GRK7 by cAMP-dependent protein kinase attenuates their enzymatic activities. Horner, T.J., Osawa, S., Schaller, M.D., Weiss, E.R. J. Biol. Chem. (2005) [Pubmed]
  31. Neutron diffraction studies of retinal rod outer segment membranes. Saibil, H., Chabre, M., Worcester, D. Nature (1976) [Pubmed]
  32. Cyclic GMP injected into retinal rod outer segments increases latency and amplitude of response to illumination. Nicol, G.D., Miller, W.H. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  33. Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods. Gorczyca, W.A., Gray-Keller, M.P., Detwiler, P.B., Palczewski, K. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  34. Purification of retinol dehydrogenase from bovine retinal rod outer segments. Ishiguro, S., Suzuki, Y., Tamai, M., Mizuno, K. J. Biol. Chem. (1991) [Pubmed]
  35. The hydrodynamic properties of dark- and light-activated states of n-dodecyl beta-D-maltoside-solubilized bovine rhodopsin support the dimeric structure of both conformations. Medina, R., Perdomo, D., Bubis, J. J. Biol. Chem. (2004) [Pubmed]
WikiGenes - Universities