GENETIC ANALYSIS OF HOST RESISTANCE: Toll-Like Receptor Signaling and Immunity at Large.
Classical genetic methods, driven by phenotype rather than hypotheses, generally permit the identification of all proteins that serve nonredundant functions in a defined biological process. Long before this goal is achieved, and sometimes at the very outset, genetics may cut to the heart of a biological puzzle. So it was in the field of mammalian innate immunity. The positional cloning of a spontaneous mutation that caused lipopolysaccharide resistance and susceptibility to Gram-negative infection led directly to the understanding that Toll-like receptors (TLRs) are essential sensors of microbial infection. Other mutations, induced by the random germ line mutagen ENU (N-ethyl-N-nitrosourea), have disclosed key molecules in the TLR signaling pathways and helped us to construct a reasonably sophisticated portrait of the afferent innate immune response. A still broader genetic screen-one that detects all mutations that compromise survival during infection-is permitting fresh insight into the number and types of proteins that mammals use to defend themselves against microbes.[1]References
- GENETIC ANALYSIS OF HOST RESISTANCE: Toll-Like Receptor Signaling and Immunity at Large. Beutler, B., Jiang, Z., Georgel, P., Crozat, K., Croker, B., Rutschmann, S., Du, X., Hoebe, K. Annu. Rev. Immunol. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg