The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

DPCPX-resistant hypoxic synaptic depression in the CA1 region of hippocampal slices: possible role of intracellular accumulation of monocarboxylates.

Adenosine plays the principal role in synaptic depression during various energy-depleted conditions. However, additional inhibitory factors not associated with A1 adenosine receptors appear to be involved in hypoxic insults. Monocarboxylate accumulation and consequent acidic changes during hypoxia may be responsible for this remaining depression in synaptic activity. Field evoked potentials were recorded in the CA1 region of rat hippocampal slices. Preincubation with 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) disclosed 43% of DPCPX-resistant synaptic depression (DRSD) during oxygen deprivation (OD). In contrast, no DRSD was detected in various conditions with limited glucose utilization, such as glucose deprivation and oxygen-glucose deprivation. Inhibition of anaerobic glycolysis (iodoacetate, sodium fluoride) abolished DRSD during OD, whereas blockade of monocarboxylate utilization with alpha-cyano-4-hydroxycinnamic acid (4-CIN) provoked DRSD in normoxic medium. These observations suggest that an intracellular accumulation of monocarboxylates is responsible for DRSD during hypoxia.[1]

References

 
WikiGenes - Universities