The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Dynamic sequestration of the recycling compartment by classical protein kinase C.

It has been previously shown that upon sustained stimulation (30-60 min) with phorbol esters, protein kinase C (PKC) alpha and betaII become sequestered in a juxtanuclear region, the pericentrion. The activation of PKC also results in sequestration of transferrin, suggesting a role for PKC in regulating endocytosis and sequestration of recycling components. In this work we characterize the pericentrion as a PKC-dependent subset of the recycling compartment. We demonstrate that upon sustained stimulation of PKC, both protein (CD59, caveolin) and possibly also lipid (Bodipy-GM1) cargo become sequestered in a PKC-dependent manner. This sequestration displayed a strict temperature requirement and was inhibited below 32 degrees C. Treatment of cells with phorbol myristate acetate for 60 min led to the formation of a distinct membrane structure. PKC sequestration and pericentrion formation were blocked by hypertonic sucrose as well as by potassium depletion (inhibitors of clathrin-dependent endocytosis) but not by nystatin or filipin, which inhibit clathrin-independent pathways. Interestingly, it was also observed that some molecules that internalize through clathrin-independent pathways (CD59, Bodipy-GM1, caveolin) also sequestered to the pericentrion upon sustained PKC activation, suggesting that PKC acted distal to the site of internalization of endocytic cargo. Together these results suggest that PKC regulates sequestration of recycling molecules into this compartment, the pericentrion.[1]

References

  1. Dynamic sequestration of the recycling compartment by classical protein kinase C. Idkowiak-Baldys, J., Becker, K.P., Kitatani, K., Hannun, Y.A. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities