The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Filipin     (4E,6E,8E,10E,12E)- 3,14,16,18,20,22,24,26...

Synonyms: Filmirisin, Filimirasin, CHEMBL154669, BSPBio_002370, NSC-760132, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Filipin

  • In addition to its effects in CaCo-2 cells that express low levels of caveolin, filipin also inhibited CT activity in human epidermoid carcinoma A431 and Jurkat T lymphoma cells that are, respectively, rich in or lack caveolin [1].
  • Fluorescence microscopic examination of filipin-stained cultured skin fibroblasts derived from two brothers with group D Niemann-Pick disease revealed abnormal storage of low density lipoprotein (LDL)-derived cholesterol [2].
  • The staining patterns of BCtheta and filipin in human epidermoid carcinoma A431 cells with and without cholesterol depletion suggest that BCtheta binds to specific membrane domains on the cell surface, whereas filipin binding is indiscriminate to cell cholesterol [3].
  • By using the probe 4-amino-5-methylamino-2',7'-difluorofluorescein, it was found that the NO level in the glioma population was increased by 15% after 1 or 10 cytoplasmic traversals, and this NO production was inhibited by filipin [4].
  • Mycoplasma gallisepticum was adapted to grow with delta 5-sterols modified in the aliphatic side chain, and stopped-flow kinetic measurements of filipin association were made to estimate the sterol distribution between the two leaflets of the membrane [5].
 

High impact information on Filipin

 

Chemical compound and disease context of Filipin

 

Biological context of Filipin

 

Anatomical context of Filipin

  • We also determined the distribution of morphologically detectable cholesterol in M-cell plasma and intracellular membranes in dome epithelium exposed to the polyene antibiotic, filipin [9].
  • In contrast, apical membrane endocytic pits and coated vesicles in M cells failed to show filipin-induced membrane lesions [9].
  • Uptake of caveolae and degradation of PrPC was slow and sensitive to filipin [18].
  • This permitted us to identify all of the vesicles involved in the transport of LDL to the lysosome and to determine whether the membranes of these vesicles were able to bind filipin [19].
  • Filipin significantly reduces the transcellular transport of insulin and albumin across cultured endothelial cell monolayers [14].
 

Associations of Filipin with other chemical compounds

 

Gene context of Filipin

 

Analytical, diagnostic and therapeutic context of Filipin

References

  1. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. Orlandi, P.A., Fishman, P.H. J. Cell Biol. (1998) [Pubmed]
  2. Niemann-pick variant disorders: comparison of errors of cellular cholesterol homeostasis in group D and group C fibroblasts. Butler, J.D., Comly, M.E., Kruth, H.S., Vanier, M., Filling-Katz, M., Fink, J., Barton, N., Weintroub, H., Quirk, J.M., Tokoro, T. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  3. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Waheed, A.A., Shimada, Y., Heijnen, H.F., Nakamura, M., Inomata, M., Hayashi, M., Iwashita, S., Slot, J.W., Ohno-Iwashita, Y. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  4. Targeted cytoplasmic irradiation induces bystander responses. Shao, C., Folkard, M., Michael, B.D., Prise, K.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  5. Distribution and movement of sterols with different side chain structures between the two leaflets of the membrane bilayer of mycoplasma cells. Clejan, S., Bittman, R. J. Biol. Chem. (1984) [Pubmed]
  6. Increase in membrane cholesterol: a possible trigger for degradation of HMG CoA reductase and crystalloid endoplasmic reticulum in UT-1 cells. Orci, L., Brown, M.S., Goldstein, J.L., Garcia-Segura, L.M., Anderson, R.G. Cell (1984) [Pubmed]
  7. Failure of filipin to detect cholesterol-rich domains in smooth muscle plasma membrane. Severs, N.J., Simons, H.L. Nature (1983) [Pubmed]
  8. Opposite polarity of filipin-induced deformations in the membrane of condensing vacuoles and zymogen granules. Orci, L., Miller, R.G., Montesano, R., Perrelet, A., Amherdt, M., Vassalli, P. Science (1980) [Pubmed]
  9. Structural features of and cholesterol distribution in M-cell membranes in guinea pig, rat, and mouse Peyer's patches. Madara, J.L., Bye, W.A., Trier, J.S. Gastroenterology (1984) [Pubmed]
  10. Characterization of rotavirus cell entry. Sánchez-San Martín, C., López, T., Arias, C.F., López, S. J. Virol. (2004) [Pubmed]
  11. Disruption of lipid rafts enhances activity of botulinum neurotoxin serotype A. Petro, K.A., Dyer, M.A., Yowler, B.C., Schengrund, C.L. Toxicon (2006) [Pubmed]
  12. A kinetics study of pig erythrocyte hemolysis induced by polyene antibiotics. Knopik-Skrocka, A., Bielawski, J., Głab, M., Klafaczyńska, A., Wulkiewicz, M. Cell. Mol. Biol. Lett. (2003) [Pubmed]
  13. Effect of potential cytostatic and immune modulating chemicals on the plasma membrane of red blood cells (RBC) as revealed by osmotic hemolysis, cell electrophoresis and scanning electron microscopy (SEM). Augsten, K., Peschke, T., Wohlrabe, K. Experimentelle Pathologie. (1979) [Pubmed]
  14. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. Schnitzer, J.E., Oh, P., Pinney, E., Allard, J. J. Cell Biol. (1994) [Pubmed]
  15. Modifications of anionic-lipid domains preceding membrane fusion in guinea pig sperm. Bearer, E.L., Friend, D.S. J. Cell Biol. (1982) [Pubmed]
  16. Substantial narrowing of the Niemann-Pick C candidate interval by yeast artificial chromosome complementation. Gu, J.Z., Carstea, E.D., Cummings, C., Morris, J.A., Loftus, S.K., Zhang, D., Coleman, K.G., Cooney, A.M., Comly, M.E., Fandino, L., Roff, C., Tagle, D.A., Pavan, W.J., Pentchev, P.G., Rosenfeld, M.A. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  17. Involvement of membrane signaling in the bystander effect in irradiated cells. Nagasawa, H., Cremesti, A., Kolesnick, R., Fuks, Z., Little, J.B. Cancer Res. (2002) [Pubmed]
  18. Trafficking of prion proteins through a caveolae-mediated endosomal pathway. Peters, P.J., Mironov, A., Peretz, D., van Donselaar, E., Leclerc, E., Erpel, S., DeArmond, S.J., Burton, D.R., Williamson, R.A., Vey, M., Prusiner, S.B. J. Cell Biol. (2003) [Pubmed]
  19. Filipin-cholesterol complexes form in uncoated vesicle membrane derived from coated vesicles during receptor-mediated endocytosis of low density lipoprotein. McGookey, D.J., Fagerberg, K., Anderson, R.G. J. Cell Biol. (1983) [Pubmed]
  20. Orientation of glycoprotein galactosyltransferase and sialyltransferase enzymes in vesicles derived from rat liver Golgi apparatus. Fleischer, B. J. Cell Biol. (1981) [Pubmed]
  21. Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. Pagano, R.E., Sepanski, M.A., Martin, O.C. J. Cell Biol. (1989) [Pubmed]
  22. Lipid rafts are required for GLUT4 internalization in adipose cells. Ros-Baro, A., Lopez-Iglesias, C., Peiro, S., Bellido, D., Palacin, M., Zorzano, A., Camps, M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  23. Pathways for internalization and recycling of the chemokine receptor CCR5. Mueller, A., Kelly, E., Strange, P.G. Blood (2002) [Pubmed]
  24. Correction of Apolipoprotein A-I-mediated Lipid Efflux and High Density Lipoprotein Particle Formation in Human Niemann-Pick Type C Disease Fibroblasts. Boadu, E., Choi, H.Y., Lee, D.W., Waddington, E.I., Chan, T., Asztalos, B., Vance, J.E., Chan, A., Castro, G., Francis, G.A. J. Biol. Chem. (2006) [Pubmed]
  25. Disruption of lipid rafts stimulates phospholipase d activity in human lymphocytes: implication in the regulation of immune function. Diaz, O., Mébarek-Azzam, S., Benzaria, A., Dubois, M., Lagarde, M., Némoz, G., Prigent, A.F. J. Immunol. (2005) [Pubmed]
  26. Lipid microdomains are required sites for the selective endocytosis and nuclear translocation of IFN-gamma, its receptor chain IFN-gamma receptor-1, and the phosphorylation and nuclear translocation of STAT1alpha. Subramaniam, P.S., Johnson, H.M. J. Immunol. (2002) [Pubmed]
  27. Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. Huo, H., Guo, X., Hong, S., Jiang, M., Liu, X., Liao, K. J. Biol. Chem. (2003) [Pubmed]
  28. Isolation and characterization of Chinese hamster ovary cell mutants defective in intracellular low density lipoprotein-cholesterol trafficking. Cadigan, K.M., Spillane, D.M., Chang, T.Y. J. Cell Biol. (1990) [Pubmed]
  29. Replacement of the transmembrane anchor in angiotensin I-converting enzyme (ACE) with a glycosylphosphatidylinositol tail affects activation of the B2 bradykinin receptor by ACE inhibitors. Marcic, B., Deddish, P.A., Skidgel, R.A., Erdös, E.G., Minshall, R.D., Tan, F. J. Biol. Chem. (2000) [Pubmed]
  30. Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. Xiang, Y., Rybin, V.O., Steinberg, S.F., Kobilka, B. J. Biol. Chem. (2002) [Pubmed]
  31. Ultrastructural analysis of crystalloid endoplasmic reticulum in UT-1 cells and its disappearance in response to cholesterol. Anderson, R.G., Orci, L., Brown, M.S., Garcia-Segura, L.M., Goldstein, J.L. J. Cell. Sci. (1983) [Pubmed]
 
WikiGenes - Universities