The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Analysis of non-crossover bivalents in pachytene cells from 10 normal men.

BACKGROUND: Bivalents with no recombination foci (possible achiasmates) are unable to orient properly on the metaphase plate or to segregate chromosomes to daughter cells. Non-crossover bivalents are known to cause meiotic arrest in various organisms. METHODS: Individual non-crossover bivalents were identified in 886 pachytene cells (19 492 bivalents) from testicular biopsies of 10 normal men. Fluorescence staining combined with centromere-specific multicolour fluorescence in situ hybridization (cenM-FISH) was used to identify mismatch repair gene mutation of human mutL homologue 1 (MLH1) recombination foci along each bivalent synaptonemal complex (SC). RESULTS: A total of 60 autosomal non-crossovers (SCs without an MLH1 focus) were found, and of these, chromosomes 21 (2.1%) and 22 (1.7%) had a significantly higher proportion than chromosomes 11, 12, 19 (each 0.1%), 13 (0.2%), 14 (0.6%), 16 (0.5%) and 15, 17, 18, 20 (each 0.3%) (P < 0.05). Sex chromosome univalents had a frequency of 27%, higher than that observed in any autosomal bivalent (P < 0.0001). CONCLUSIONS: These results suggest that G-group chromosomes and sex chromosomes are most susceptible to having no recombination foci and thus would be more susceptible to non-disjunction during spermatogenesis. This is consistent with previous observations from sperm karyotyping and FISH analysis, which demonstrate that chromosomes 21 and 22 and the sex chromosomes have a significantly increased frequency of aneuploidy compared with other autosomes.[1]

References

  1. Analysis of non-crossover bivalents in pachytene cells from 10 normal men. Sun, F., Oliver-Bonet, M., Liehr, T., Starke, H., Turek, P., Ko, E., Rademaker, A., Martin, R.H. Hum. Reprod. (2006) [Pubmed]
 
WikiGenes - Universities