Identification of disabled-1 as a candidate gene for critical period neuroplasticity in cat and mouse visual cortex.
Rearing in darkness slows the time course of the critical period in visual cortex, such that at 5 weeks of age normal cats are more plastic than dark-reared cats, whereas at 20 weeks dark-reared cats are more plastic [G. D. Mower (1991)Dev. Brain Res., 58, 151-158]. Thus, a stringent criterion is that genes that are important for plasticity in visual cortex will show differences in expression between normal and dark-reared visual cortex that are of opposite direction in young vs. older animals. The present study reports the identification by differential display PCR of Dab-1, the mammalian homolog of the drosophila disabled-1 gene, as a candidate gene for critical period neuronal plasticity, expression of which is regulated according to this criterion in cat visual cortex. Evidence for this bidirectional direction regulation is extended to Dab-1 protein in cat and mouse visual cortex and shown to be specific to visual cortex, not occurring in frontal cortex. The Reelin/Dab-1 pathway has well-documented functions in cell migration during prenatal life and increasing evidence indicates that in postnatal brain the pathway plays a role in synaptic plasticity. The present results extend this evidence by directly implicating Dab-1 in postnatal critical period plasticity of visual cortex.[1]References
- Identification of disabled-1 as a candidate gene for critical period neuroplasticity in cat and mouse visual cortex. Yang, C.B., Zheng, Y.T., Kiser, P.J., Mower, G.D. Eur. J. Neurosci. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg