The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Visual Cortex

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Visual Cortex

 

Psychiatry related information on Visual Cortex

 

High impact information on Visual Cortex

  • Switch-like behavior is not seen in the visual cortex, but might be seen in the hippocampus if the relative density of NMDA receptors there was higher than in the visual cortex.(ABSTRACT TRUNCATED AT 400 WORDS)[11]
  • The visual cortex is thus served by many cortico-cortical connections to form a network of considerable complexity [12].
  • Dark-rearing delays the loss of NMDA-receptor function in kitten visual cortex [13].
  • A particularly striking example is the pattern of glomeruli in the olfactory bulbs; other instances are columns and 'blobs' in the visual cortex, barrels and columns in the somatosensory cortex, and striasomes and cell islands in the neostriatum [14].
  • Thus, calbindin occurs in the primate striate cortex in a pattern almost complementary to that displaying strong cytochrome c-oxidase activity [15].
 

Chemical compound and disease context of Visual Cortex

 

Biological context of Visual Cortex

 

Anatomical context of Visual Cortex

 

Associations of Visual Cortex with chemical compounds

 

Gene context of Visual Cortex

 

Analytical, diagnostic and therapeutic context of Visual Cortex

References

  1. Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. Wenzel, R., Bartenstein, P., Dieterich, M., Danek, A., Weindl, A., Minoshima, S., Ziegler, S., Schwaiger, M., Brandt, T. Brain (1996) [Pubmed]
  2. Mitochondrial encephalomyopathy: elevated visual cortex lactate unresponsive to photic stimulation--a localized 1H-MRS study. Kuwabara, T., Watanabe, H., Tanaka, K., Tsuji, S., Ohkubo, M., Ito, T., Sakai, K., Yuasa, T. Neurology (1994) [Pubmed]
  3. Elevation of cerebral lactate detected by localized 1H-magnetic resonance spectroscopy in migraine during the interictal period. Watanabe, H., Kuwabara, T., Ohkubo, M., Tsuji, S., Yuasa, T. Neurology (1996) [Pubmed]
  4. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Kim, S.G., Rostrup, E., Larsson, H.B., Ogawa, S., Paulson, O.B. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. (1999) [Pubmed]
  5. Studies of visual function and its decay in mice with hereditary retinal degeneration. Dräger, U.C., Hubel, D.H. J. Comp. Neurol. (1978) [Pubmed]
  6. Effects of sleep and arousal on the processing of visual information in the cat. Livingstone, M.S., Hubel, D.H. Nature (1981) [Pubmed]
  7. Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex. Renger, J.J., Hartman, K.N., Tsuchimoto, Y., Yokoi, M., Nakanishi, S., Hensch, T.K. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  8. Neural correlates of adjunctive rivastigmine treatment to antipsychotics in schizophrenia: a randomized, placebo-controlled, double-blind fMRI study. Kumari, V., Aasen, I., ffytche, D., Williams, S.C., Sharma, T. Neuroimage (2006) [Pubmed]
  9. NMDA, AMPA, and benzodiazepine binding site changes in Alzheimer's disease visual cortex. Carlson, M.D., Penney, J.B., Young, A.B. Neurobiol. Aging (1993) [Pubmed]
  10. Alterations in GAP-43 and synapsin immunoreactivity provide evidence for synaptic reorganization in adult cat dorsal lateral geniculate nucleus following retinal lesions. Baekelandt, V., Arckens, L., Annaert, W., Eysel, U.T., Orban, G.A., Vandesande, F. Eur. J. Neurosci. (1994) [Pubmed]
  11. The role of NMDA receptors in information processing. Daw, N.W., Stein, P.S., Fox, K. Annu. Rev. Neurosci. (1993) [Pubmed]
  12. Objective analysis of the topological organization of the primate cortical visual system. Young, M.P. Nature (1992) [Pubmed]
  13. Dark-rearing delays the loss of NMDA-receptor function in kitten visual cortex. Fox, K., Daw, N., Sato, H., Czepita, D. Nature (1991) [Pubmed]
  14. Development of glomerular pattern visualized in the olfactory bulbs of living mice. LaMantia, A.S., Purves, D. Nature (1989) [Pubmed]
  15. Calbindin immunoreactivity alternates with cytochrome c-oxidase-rich zones in some layers of the primate visual cortex. Celio, M.R., Schärer, L., Morrison, J.H., Norman, A.W., Bloom, F.E. Nature (1986) [Pubmed]
  16. Substantial reduction of cortical noradrenaline by lesions of adrenergic pathway does not prevent effects of monocular deprivation. Daw, N.W., Robertson, T.W., Rader, R.K., Videen, T.O., Coscia, C.J. J. Neurosci. (1984) [Pubmed]
  17. Expression of neuroserpin in the visual cortex of the mouse during the developmental critical period. Wannier-Morino, P., Rager, G., Sonderegger, P., Grabs, D. Eur. J. Neurosci. (2003) [Pubmed]
  18. Experience-dependent changes in NMDAR1 expression in the visual cortex of an animal model for amblyopia. Murphy, K.M., Duffy, K.R., Jones, D.G. Vis. Neurosci. (2004) [Pubmed]
  19. Auditory cortex lesions prevent the extinction of Pavlovian differential heart rate conditioning to tonal stimuli in rabbits. Teich, A.H., McCabe, P.M., Gentile, C.C., Schneiderman, L.S., Winters, R.W., Liskowsky, D.R., Schneiderman, N. Brain Res. (1989) [Pubmed]
  20. A visual evoked potential study of metacontrast masking. Jeffreys, D.A., Musselwhite, M.J. Vision Res. (1986) [Pubmed]
  21. Long-term potentiation and NMDA receptors in rat visual cortex. Artola, A., Singer, W. Nature (1987) [Pubmed]
  22. Functional plasticity in the immature striate cortex of the monkey shown by the [14C]deoxyglucose method. Des Rosiers, M.H., Sakurada, O., Jehle, J., Shinohara, M., Kennedy, C., Sokoloff, L. Science (1978) [Pubmed]
  23. Active vision and visual activation in area V4. Connor, C.E. Neuron (2003) [Pubmed]
  24. Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation. Chen, W., Novotny, E.J., Zhu, X.H., Rothman, D.L., Shulman, R.G. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  25. Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns. Cabelli, R.J., Shelton, D.L., Segal, R.A., Shatz, C.J. Neuron (1997) [Pubmed]
  26. Localization of cholinergic differentiation factor/leukemia inhibitory factor mRNA in the rat brain and peripheral tissues. Yamamori, T. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  27. A mouse atlas of gene expression: large-scale digital gene-expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. Siddiqui, A.S., Khattra, J., Delaney, A.D., Zhao, Y., Astell, C., Asano, J., Babakaiff, R., Barber, S., Beland, J., Bohacec, S., Brown-John, M., Chand, S., Charest, D., Charters, A.M., Cullum, R., Dhalla, N., Featherstone, R., Gerhard, D.S., Hoffman, B., Holt, R.A., Hou, J., Kuo, B.Y., Lee, L.L., Lee, S., Leung, D., Ma, K., Matsuo, C., Mayo, M., McDonald, H., Prabhu, A.L., Pandoh, P., Riggins, G.J., de Algara, T.R., Rupert, J.L., Smailus, D., Stott, J., Tsai, M., Varhol, R., Vrljicak, P., Wong, D., Wu, M.K., Xie, Y.Y., Yang, G., Zhang, I., Hirst, M., Jones, S.J., Helgason, C.D., Simpson, E.M., Hoodless, P.A., Marra, M.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  28. On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. Carmignoto, G., Pasti, L., Pozzan, T. J. Neurosci. (1998) [Pubmed]
  29. Changes in c-fos mRNA expression in rat brain during odor discrimination learning: differential involvement of hippocampal subfields CA1 and CA3. Hess, U.S., Lynch, G., Gall, C.M. J. Neurosci. (1995) [Pubmed]
  30. NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats. Tsumoto, T., Hagihara, K., Sato, H., Hata, Y. Nature (1987) [Pubmed]
  31. Aspartate and glutamate as possible neurotransmitters of cells in layer 6 of the visual cortex. Baughman, R.W., Gilbert, C.D. Nature (1980) [Pubmed]
  32. Two methods of catecholamine depletion in kitten visual cortex yield different effects on plasticity. Bear, M.F., Paradiso, M.A., Schwartz, M., Nelson, S.B., Carnes, K.M., Daniels, J.D. Nature (1983) [Pubmed]
  33. Transient increase in muscarinic acetylcholine receptor and acetylcholinesterase in visual cortex on first exposure of dark-reared rats to light. Rose, S.P., Stewart, M.G. Nature (1978) [Pubmed]
  34. Physiological evidence that the 2-deoxyglucose method reveals orientation columns in cat visual cortex. Schoppmann, A., Stryker, M.P. Nature (1981) [Pubmed]
  35. Combgap relays wingless signal reception to the determination of cortical cell fate in the Drosophila visual system. Song, Y., Chung, S., Kunes, S. Mol. Cell (2000) [Pubmed]
  36. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Quinlan, E.M., Olstein, D.H., Bear, M.F. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  37. Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. Akaneya, Y., Tsumoto, T., Kinoshita, S., Hatanaka, H. J. Neurosci. (1997) [Pubmed]
  38. Rapid phosphorylation of Elk-1 transcription factor and activation of MAP kinase signal transduction pathways in response to visual stimulation. Kaminska, B., Kaczmarek, L., Zangenehpour, S., Chaudhuri, A. Mol. Cell. Neurosci. (1999) [Pubmed]
  39. Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. Roberts, E.B., Ramoa, A.S. J. Neurophysiol. (1999) [Pubmed]
  40. Development of orientation columns in cat striate cortex revealed by 2-deoxyglucose autoradiography. Thompson, I.D., Kossut, M., Blakemore, C. Nature (1983) [Pubmed]
  41. Ephrin-as guide the formation of functional maps in the visual cortex. Cang, J., Kaneko, M., Yamada, J., Woods, G., Stryker, M.P., Feldheim, D.A. Neuron (2005) [Pubmed]
  42. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Prichard, J., Rothman, D., Novotny, E., Petroff, O., Kuwabara, T., Avison, M., Howseman, A., Hanstock, C., Shulman, R. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  43. Neuronal expression of nuclear and mitochondrial genes for cytochrome oxidase (CO) subunits analyzed by in situ hybridization: comparison with CO activity and protein. Hevner, R.F., Wong-Riley, M.T. J. Neurosci. (1991) [Pubmed]
  44. Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation in vivo. Gjedde, A., Marrett, S. J. Cereb. Blood Flow Metab. (2001) [Pubmed]
 
WikiGenes - Universities