The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A multitargeted receptor tyrosine kinase inhibitor, SU6668, does not affect the healing of cutaneous full-thickness incisional wounds in SKH-1 mice.

Disturbances of angiogenesis have been suggested to result in the impaired healing of skin wounds. Using a murine incisional wound model, we evaluated the effects of SU6668, an inhibitor of the receptors for vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and fibroblast growth factor ( FGF), on the healing of skin wounds. Mice were administered vehicle, SU6668 (100 or 400 mg/kg/day, b.i.d.), or dexamethasone (1 mg/kg/day, b.i.d.), and wound healing was monitored histologically and using a tensiometer. SU6668 at a fully efficacious dose of 100 mg/kg/day had no significant effect on the healing process, while at a supratherapeutic dose of 400 mg/kg/day, there were subtle transient histologic changes and slight decreases in tensile strength, suggesting a slight delay in the wound healing process. In conclusion, these data indicate that inhibition of the receptors for VEGF, PDGF, and FGF at levels necessary to inhibit tumor growth in mouse xenograft models does not affect the healing of incisional wounds in mice. Redundant pathways likely compensate for inhibition of VEGF, PDGF, and FGF signaling pathways in the skin healing process.[1]

References

  1. A multitargeted receptor tyrosine kinase inhibitor, SU6668, does not affect the healing of cutaneous full-thickness incisional wounds in SKH-1 mice. Duan, W.R., Patyna, S., Kuhlmann, M.A., Li, S., Blomme, E.A. Journal of investigative surgery : the official journal of the Academy of Surgical Research. (2006) [Pubmed]
 
WikiGenes - Universities