The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Chemical and electrical passivation of single-crystal silicon(100) surfaces through a two-step chlorination/alkylation process.

Single-crystal Si(100) surfaces have been functionalized by using a two-step radical chlorination-Grignard (R = MgCl, R = CH3, C2H5, C4H9, C6H5, or CH2C6H5) alkylation method. After alkylation, no chlorine was detectable on the surface by X-ray photoelectron spectroscopy (XPS), and the C 1s region showed a silicon-induced peak shift indicative of a Si-C bond. The relative intensity of this peak decreased, as expected, as the steric bulk of the alkyl increased. Despite the lack of full alkyl termination of the atop sites of the Si(100) surface, functionalization significantly reduced the rate of surface oxidation in air compared to that of the H-terminated Si(100) surface, with alkylated surfaces forming less than half a monolayer of oxide after over one month of exposure to air. Studies of the charge-carrier lifetime with rf photoconductivity decay methods indicated a surface recombination velocity of <30 cm s(-1) for methylated surfaces, and <60 cm s(-1) for Si surfaces functionalized with the other alkyl groups evaluated. Soft X-ray photoelectron spectroscopic data indicated that the H-Si(100) surfaces were terminated by SiH, SiH2, and SiH3 species, whereas Cl-Si(100) surfaces were predominantly terminated by monochloro (SiCl and SiHCl) and dichloro (SiCl2 and SiHCl2) Si species. Methylation produced signals consistent with termination by Si-alkyl bonding arising from SiH(CH3)-, SiH2(CH3)-, and Si(CH3)2-type species.[1]

References

  1. Chemical and electrical passivation of single-crystal silicon(100) surfaces through a two-step chlorination/alkylation process. Nemanick, E.J., Hurley, P.T., Webb, L.J., Knapp, D.W., Michalak, D.J., Brunschwig, B.S., Lewis, N.S. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical. (2006) [Pubmed]
 
WikiGenes - Universities