The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Selective alteration of the rate-limiting step in cytosolic aldehyde dehydrogenase through random mutagenesis.

Random mutagenesis followed by a filter-based screening assay has been used to identify a mutant of human class 1 aldehyde dehydrogenase (ALDH1) that was no longer inhibited by Mg(2+) ions but was activated in their presence. Several mutants possessed double, triple, and quadruple amino acid substitutions with a total of seven different residues being altered, but each had a common T244S change. This point mutation proved to be responsible for the Mg(2+) ion activation. An ALDH1 T244S mutant was recombinantly expressed and was used for mechanistic studies. Mg(2+) ions have been shown to increase the rate of deacylation. Consistent with the rate-limiting step for ALDH1 being changed from coenzyme dissociation to deacylation was finding that chloroacetaldehyde was oxidized more rapidly than acetaldehyde. Furthermore, Mg(2+) ions only in the presence of NAD(H) increased the rate of hydrolysis of p-nitrophenyl acetate showing that the metal only affects the binary complex. Though the rate-limiting step for the T244S mutant was different from that of the native enzyme, the catalytic efficiency of the mutant was just 20% that of the native enzyme. The basis for the change in the rate-limiting step appears to be related to NAD(+) binding. Using the structure of a sheep class 1 ALDH, it was possible to deduce that the interaction between the side chain of T244 and its neighboring residues with the nicotinamide ring of NAD(+) were an essential determinant in the catalytic action of ALDH1.[1]


WikiGenes - Universities