The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mn-superoxide dismutase overexpression enhances G2 accumulation and radioresistance in human oral squamous carcinoma cells.

This study investigates the hypothesis that Mn-superoxide dismutase (MnSOD) influences cancer cell radiosensitivity by regulating the G(2)-checkpoint pathway. Human oral squamous carcinoma cells (SCC25) stably overexpressing MnSOD were irradiated (6 Gy) and assayed for cell survival, cell-cycle phase distributions, and bromodeoxyuridine (BrdU) pulse-chase flow-cytometric measurements of cell-cycle phase transits. Electron paramagnetic resonance (EPR) spectroscopy was used to measure steady-state levels of oxygen-centered free radicals. Glutathione and glutathione disulfide levels were used as indicators of changes in the intracellular redox state. MnSOD overexpression increased radioresistance threefold to fourfold; this increase was associated with twofold to threefold increases in radiation-induced G(2) accumulation. BrdU pulse-chase and flow-cytometric measurements of the percentage of G(1) and relative movement showed no significant changes in G(1) and S transits; however, the percentage of G(2) cells and BrdU-positive cells showed delayed G(2)+M transits in MnSOD-overexpressing irradiated cells. The steady-state levels of oxygen-centered free radicals were not significantly different in vector compared with MnSOD-overexpressing cells, suggesting that the free radical generation is essentially similar. MnSOD overexpression did prevent radiation-induced decreases in total glutathione content, which correlated with radioresistance and enhanced G(2) accumulation. These results support the hypothesis that a "metabolic redox-response" to IR exposure regulates radiosensitivity by altering radiation-induced G(2) accumulation.[1]


  1. Mn-superoxide dismutase overexpression enhances G2 accumulation and radioresistance in human oral squamous carcinoma cells. Kalen, A.L., Sarsour, E.H., Venkataraman, S., Goswami, P.C. Antioxid. Redox Signal. (2006) [Pubmed]
WikiGenes - Universities