A label-free continuous total-internal-reflection-fluorescence-based immunosensor.
In this study, we continuously monitored, second-by-second, concentration changes of two different carbohydrates (maltose and panose) by using monoclonal antibodies in an optical immunosensor based on total internal reflection fluorescence. Earlier studies have demonstrated that these antibodies increase their intrinsic tryptophan fluorescence upon binding of carbohydrate antigens. Using the four immobilized monoclonal antibodies with low affinities (K(d)>10(-6)M), fast kinetics (k(off)>1s(-1)), and high reversibility gave opportunities for developing a continuous immunosensor without any need for regeneration. Since intrinsic fluorescence was used, no extrinsic labeling was necessary. Sensitivity was in the range of 1-5muM for panose, and 10-15muM for maltose and the loss of intensity was as low as 3.5% per hour during measurements. Calculations of DeltaH degrees and DeltaS degrees from the temperature dependence of K(d) indicated an enthalpic driven antigen-antibody binding event that is diminished upon antibody immobilization. We feel certain that weakly interacting antibodies can be used in future applications for continuous monitoring where there is a need to achieve instantaneous information on the concentration of an analyte.[1]References
- A label-free continuous total-internal-reflection-fluorescence-based immunosensor. Engström, H.A., Andersson, P.O., Ohlson, S. Anal. Biochem. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg