The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Metabolic engineering of the heterologous production of clorobiocin derivatives and elloramycin in Streptomyces coelicolor M512.

The aminocoumarin antibiotic clorobiocin is a potent inhibitor of bacterial gyrase. Two new analogs of clorobiocin could be obtained by deletion of a methyltransferase gene, involved in deoxysugar biosynthesis, from the biosynthetic gene cluster of clorobiocin, followed by expression of the modified cluster in the heterologous host Streptomyces coelicolor M512. However, only low amounts of the desired glycosides were formed, and aminocoumarins accumulated predominantly in form of aglyca. In the present study, we clarified the limiting steps for aminocoumarin glycoside formation, and devised strategies to improve glycosylation efficiency. Heterologous expression of a partial elloramycin biosynthetic gene cluster indicated that the rate of dTDP-l-rhamnose synthesis, rather than the rate of glycosyl transfer, was limiting for glycoside formation in this strain. Introduction of plasmid pRHAM which contains four genes from the oleandomycin biosynthetic gene cluster, directing the synthesis of dTDP-rhamnose, led to a 26-fold increase of the production of glycosylated aminocoumarins. Expression of the 4-ketoreductase gene oleU alone resulted in an 8-fold increase. Structural investigation of the resulting deoxysugars confirmed that both the endogeneous and the heterologous pathway involve a 3,5-epimerization of the deoxysugar, a hypothesis which had recently been questioned.[1]

References

  1. Metabolic engineering of the heterologous production of clorobiocin derivatives and elloramycin in Streptomyces coelicolor M512. Freitag, A., M??ndez, C., Salas, J.A., Kammerer, B., Li, S.M., Heide, L. Metab. Eng. (2006) [Pubmed]
 
WikiGenes - Universities