The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

oleandomycin     (3R,5S,6S,7R,8S,9R,12R,13R,14S ,15R)-6-[(2S...

Synonyms: Amimycin, Romicil, Landomycin, Matromycin, Oleandomycin A, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of oleandomycin

 

High impact information on oleandomycin

 

Chemical compound and disease context of oleandomycin

 

Biological context of oleandomycin

 

Anatomical context of oleandomycin

 

Associations of oleandomycin with other chemical compounds

 

Gene context of oleandomycin

  • This approach provides high separation efficiency and high sensitivity for all compounds, with detection limits (3 x peak-to-peak baseline noise) of 7.5 x 10(-8) mol/L for spiramycin, and 3 x 10(-7) mol/ L for erythromycin and oleandomycin [25].
  • After the individual administration of six macrolides to rats, with the exception of oleandomycin, five increased AGP levels in serum [29].
  • In the case of macrolide antibiotics, troleandomycin, but not oleandomycin, showed significant activation of hPXR [30].
  • LanV, a bifunctional enzyme: aromatase and ketoreductase during landomycin A biosynthesis [31].
  • Landomycin A inhibits DNA synthesis and G1/S cell cycle progression [21].
 

Analytical, diagnostic and therapeutic context of oleandomycin

References

  1. The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. Bolam, D.N., Roberts, S., Proctor, M.R., Turkenburg, J.P., Dodson, E.J., Martinez-Fleites, C., Yang, M., Davis, B.G., Davies, G.J., Gilbert, H.J. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  2. Activity of pirlimycin (U57930E) against strains of the Bacteroides fragilis group. Garcia-Rodriguez, J.A., Garcia-Sanchez, J.E., Prieto, J., Sanchez de S Lorenzo, A. Antimicrob. Agents Chemother. (1982) [Pubmed]
  3. Mutagenicity of antibiotics in microbial assays. Problems of evaluation. Mitchell I deG, n.u.l.l., Dixon, P.A., Gilbert, P.J., White, D.J. Mutat. Res. (1980) [Pubmed]
  4. Identification and antibacterial activity of a new oleandomycin derivative from Streptomyces antibioticus. Kim, B.S., Oh, H., Kim, S.Y., Park, J.A., Yoon, Y.J., Lee, S.K., Kim, B.Y., Ahn, J.S. J. Antibiot. (2005) [Pubmed]
  5. Interspecies complementation in Saccharopolyspora erythraea : elucidation of the function of oleP1, oleG1 and oleG2 from the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus and generation of new erythromycin derivatives. Doumith, M., Legrand, R., Lang, C., Salas, J.A., Raynal, M.C. Mol. Microbiol. (1999) [Pubmed]
  6. Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Quirós, L.M., Aguirrezabalaga, I., Olano, C., Méndez, C., Salas, J.A. Mol. Microbiol. (1998) [Pubmed]
  7. A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Olano, C., Rodríguez, A.M., Méndez, C., Salas, J.A. Mol. Microbiol. (1995) [Pubmed]
  8. Streptomyces antibioticus contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily. Rodríguez, A.M., Olano, C., Vilches, C., Méndez, C., Salas, J.A. Mol. Microbiol. (1993) [Pubmed]
  9. Role of glycosylation and deglycosylation in biosynthesis of and resistance to oleandomycin in the producer organism, Streptomyces antibioticus. Vilches, C., Hernandez, C., Mendez, C., Salas, J.A. J. Bacteriol. (1992) [Pubmed]
  10. Purification and characterization of an extracellular enzyme from Streptomyces antibioticus that converts inactive glycosylated oleandomycin into the active antibiotic. Quirós, L.M., Hernández, C., Salas, J.A. Eur. J. Biochem. (1994) [Pubmed]
  11. Enzymatic phosphorylation of macrolide antibiotics. Wiley, P.F., Baczynskyj, L., Dolak, L.A., Cialdella, J.I., Marshall, V.P. J. Antibiot. (1987) [Pubmed]
  12. Cloning, characterization and heterologous expression of a polyketide synthase and P-450 oxidase involved in the biosynthesis of the antibiotic oleandomycin. Shah, S., Xue, Q., Tang, L., Carney, J.R., Betlach, M., McDaniel, R. J. Antibiot. (2000) [Pubmed]
  13. A new semisynthetic macrolide antibiotic 3-O-oleandrosyl-5-O-desosaminylerythronolide A oxime. LeMahieu, R.A., Ax, H.A., Blount, J.F., Carson, M., Despreaux, C.W., Pruess, D.L., Scannell, J.P., Weiss, F., Kierstead, R.W. J. Antibiot. (1976) [Pubmed]
  14. Generation of new landomycins by combinatorial biosynthetic manipulation of the LndGT4 gene of the landomycin E cluster in S. globisporus. Ostash, B., Rix, U., Rix, L.L., Liu, T., Lombo, F., Luzhetskyy, A., Gromyko, O., Wang, C., Braña, A.F., Méndez, C., Salas, J.A., Fedorenko, V., Rohr, J. Chem. Biol. (2004) [Pubmed]
  15. Characterization of a Streptomyces antibioticus gene cluster encoding a glycosyltransferase involved in oleandomycin inactivation. Hernández, C., Olano, C., Méndez, C., Salas, J.A. Gene (1993) [Pubmed]
  16. Analysis of a Streptomyces antibioticus chromosomal region involved in oleandomycin biosynthesis, which encodes two glycosyltransferases responsible for glycosylation of the macrolactone ring. Olano, C., Rodriguez, A.M., Michel, J.M., Méndez, C., Raynal, M.C., Salas, J.A. Mol. Gen. Genet. (1998) [Pubmed]
  17. Interspecies correlation of the pharmacokinetics of erythromycin, oleandomycin, and tylosin. Duthu, G.S. Journal of pharmaceutical sciences. (1985) [Pubmed]
  18. DNA-binding activity of LndI protein and temporal expression of the gene that upregulates landomycin E production in Streptomyces globisporus 1912. Rebets, Y., Ostash, B., Luzhetskyy, A., Kushnir, S., Fukuhara, M., Bechthold, A., Nashimoto, M., Nakamura, T., Fedorenko, V. Microbiology (Reading, Engl.) (2005) [Pubmed]
  19. Enhancement by oleandomycin of the inhibitory effect of methylprednisolone on phytohemagglutinin-stimulated lymphocytes. Ong, K.S., Grieco, M.H., Rosner, W. J. Allergy Clin. Immunol. (1978) [Pubmed]
  20. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Sattler, M., Guengerich, F.P., Yun, C.H., Christians, U., Sewing, K.F. Drug Metab. Dispos. (1992) [Pubmed]
  21. Landomycin A inhibits DNA synthesis and G1/S cell cycle progression. Crow, R.T., Rosenbaum, B., Smith, R., Guo, Y., Ramos, K.S., Sulikowski, G.A. Bioorg. Med. Chem. Lett. (1999) [Pubmed]
  22. Characterization of the mac-1 gene encoding a putative ABC transporter from Myxococcus xanthus. Kimura, Y., Yamanishi, Y., Tokumasu, Y., Terasaka, H., Yoshinobu, J. J. Biochem. (2001) [Pubmed]
  23. Intracellular glycosylation and active efflux as mechanisms for resistance to oleandomycin in Streptomyces antibioticus, the producer organism. Salas, J.A., Hernández, C., Méndez, C., Olano, C., Quirós, L.M., Rodríguez, A.M., Vilches, C. Microbiologia (1994) [Pubmed]
  24. Novel mechanism for plasmid-mediated erythromycin resistance by pNE24 from Staphylococcus epidermidis. Lampson, B.C., von David, W., Parisi, J.T. Antimicrob. Agents Chemother. (1986) [Pubmed]
  25. Separation and determination of the macrolide antibiotics (erythromycin, spiramycin and oleandomycin) by capillary electrophoresis coupled with fast reductive voltammetric detection. Zhou, J., Chen, Y., Cassidy, R. Electrophoresis (2000) [Pubmed]
  26. Analysis of macrolide antibiotics by capillary electrophoresis. Flurer, C.L. Electrophoresis (1996) [Pubmed]
  27. Effects of sub-MICs of erythromycin and other macrolide antibiotics on serum sensitivity of Pseudomonas aeruginosa. Tateda, K., Hirakata, Y., Furuya, N., Ohno, A., Yamaguchi, K. Antimicrob. Agents Chemother. (1993) [Pubmed]
  28. Dual effects of macrolide antibiotics on rat liver cytochrome P-450. Induction and formation of metabolite-complexes: a structure-activity relationship. Delaforge, M., Jaouen, M., Mansuy, D. Biochem. Pharmacol. (1983) [Pubmed]
  29. Up-regulation by clarithromycin of alpha(1)-acid glycoprotein expression in liver and primary cultured hepatocytes. Komori, T., Kai, H., Shimoishi, K., Kabu, K., Nonaka, A., Maruyama, T., Tamura, K., Otagiri, M. Biochem. Pharmacol. (2001) [Pubmed]
  30. Key structural features of ligands for activation of human pregnane X receptor. Kobayashi, K., Yamagami, S., Higuchi, T., Hosokawa, M., Chiba, K. Drug Metab. Dispos. (2004) [Pubmed]
  31. LanV, a bifunctional enzyme: aromatase and ketoreductase during landomycin A biosynthesis. Mayer, A., Taguchi, T., Linnenbrink, A., Hofmann, C., Luzhetskyy, A., Bechthold, A. Chembiochem (2005) [Pubmed]
  32. Identification and expression of genes involved in biosynthesis of L-oleandrose and its intermediate L-olivose in the oleandomycin producer Streptomyces antibioticus. Aguirrezabalaga, I., Olano, C., Allende, N., Rodriguez, L., Braña, A.F., Méndez, C., Salas, J.A. Antimicrob. Agents Chemother. (2000) [Pubmed]
  33. High-performance liquid chromatographic analysis of oleandomycin in serum and urine. Stubbs, C., Haigh, J.M., Kanfer, I. J. Chromatogr. (1986) [Pubmed]
  34. Dose uniformity and redispersibility of pharmaceutical suspensions 2: assessment of three commercial erythromycin ethyl succinate oral liquids. Deicke, A., Süverkrüp, R. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V. (2000) [Pubmed]
  35. Purification and characterization of macrolide 2'-phosphotransferase type II from a strain of Escherichia coli highly resistant to macrolide antibiotics. Kono, M., O'Hara, K., Ebisu, T. FEMS Microbiol. Lett. (1992) [Pubmed]
 
WikiGenes - Universities