The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Bioluminescence imaging of Smad signaling in living mice shows correlation with excitotoxic neurodegeneration.

The TGF-beta signaling pathway is a key organizer of injury and immune responses, and recent studies suggest it fulfills critical roles in CNS function and maintenance. TGF-beta receptor activation results in phosphorylation of Smad proteins, which subsequently translocate to the nucleus to regulate gene transcription by binding to Smad binding elements (SBE). Using SBE-luciferase reporter mice, we recently discovered that the brain has the highest Smad baseline activity of any major organ in the mouse, and we now demonstrate that this signal is primarily localized to pyramidal neurons of the hippocampus. In vivo excitatory stimulation with kainic acid (KA) resulted in an increase in luciferase activity and phosphorylated Smad2 (Smad2P), and nuclear translocation of Smad2P in hippocampal CA3 neurons correlated significantly with luciferase activity. Although this activation was most prominent at 24 h after KA administration in neurons, Smad2P immunoreactivity gradually increased in astrocytes and microglial cells at 3 and 5 days, consistent with reactive gliosis. Bioluminescence measured over the skull in living mice peaked at 12-72 h and correlated with the extent of microglial activation and pathological markers of neurodegeneration 5 days after injury. Treatment with the glutamate receptor antagonist MK-801 strongly reduced bioluminescence and pathology. These results show that Smad2 signaling is a sensitive marker of neuronal activation and CNS injury that can be used to monitor KA-induced neuronal degeneration. This and related mouse models may provide valuable tools to study mechanisms and treatments for neurodegeneration.[1]

References

  1. Bioluminescence imaging of Smad signaling in living mice shows correlation with excitotoxic neurodegeneration. Luo, J., Lin, A.H., Masliah, E., Wyss-Coray, T. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
 
WikiGenes - Universities