The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gliosis


Psychiatry related information on Gliosis

  • Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines [6].
  • Autopsy demonstrated the classic pathology of Pick's disease, including massive neuron loss and gliosis in the frontal and cingulate cortex as well as numerous tau-positive hippocampal Pick bodies [7].
  • Huntington's disease (HD) is characterized by selective neuronal loss and reactive gliosis [8].
  • Increased levels in the CSF are believed to indicate reactive gliosis in most patients with dementia, whereas GFAp levels in encephalitic patients normalize after clinical recovery [9].
  • We investigated the neuropathologic features of spinal cord lesions in 23 patients with sporadic Creutzfeldt-Jakob disease (sCJD), paying particular attention to neuronal loss and gliosis, pyramidal tract degeneration and prion protein (PrP) deposition [10].

High impact information on Gliosis

  • In addition, four out of six homozygous mice showed reactive gliosis at 14 weeks of age, suggesting an impaired neuronal function as a result of the APP-null mutation [11].
  • Here we show that transgenic mice expressing the amyloidogenic carboxy-terminal 104 amino acids of APP develop, with ageing, extracellular beta-amyloid immunoreactivity, increased gliosis and microglial reactivity, as well as cell loss in the CA1 region of the hippocampus [12].
  • Prion diseases are characterized by neuronal degeneration, gliosis and accumulation of PrPSc [13].
  • AD brains contain numerous amyloid plaques surrounded by dystrophic neurites, and show profound synaptic loss, neurofibrillary tangle formation and gliosis [14].
  • These mice exhibit a slowly progressive neurological disorder characterized clinically by ataxia and neuropathologically by cerebellar atrophy and granule cell loss, gliosis, and PrP deposition that is most prominent in the cerebellum and hippocampus [15].

Chemical compound and disease context of Gliosis

  • Focal loss of the EAAT2 glutamate transporter in the ventral horn of the spinal cord coincided with gliosis, but appeared before motor neuron/axon degeneration [16].
  • Surprisingly, in rolipram-treated animals, there was also an attenuation of reactive gliosis [17].
  • CM101, an antiangiogenic polysaccharide derived from group B streptococcus, was administered by i.v. injection 1 hr post-spinal-cord crush injury in an effort to prevent inflammatory angiogenesis and gliosis (scarring) in a mouse model [18].
  • In vivo infusion into brain of adenosine analogs stimulates reactive gliosis [19].
  • Pronounced gliosis, an indicator of neuronal stress and neurodegeneration, was also apparent in older cat F-/- mice. cat F is the only cysteine cathepsin whose inactivation alone causes a lysosomal storage defect and progressive neurological features in mice [20].

Biological context of Gliosis


Anatomical context of Gliosis


Gene context of Gliosis

  • The GFAP-negative mice displayed post-traumatic reactive gliosis, which suggests that GFAP up-regulation, a hallmark of reactive gliosis, is not an obligatory requirement for this process [30].
  • These results demonstrate that CNTF functions as an inducer of reactive gliosis, a condition associated with a number of neurological diseases of the CNS [31].
  • Thus, widespread Abeta deposition in 18-month-old heterozygotic mice produces neuritic alterations and gliosis without widespread neuronal death [32].
  • The cognate PDGF-alpha receptor (PDGFR-alpha) mRNA was heterogeneously distributed in gliomas of all grades, and PDGFR-alpha expression was higher in gliomas than in gliosis [33].
  • The expression of platelet-derived growth factor (PDGF) and its receptors was analyzed in 14 gliomas of various degrees of malignancy and compared with three gliosis cases by in situ hybridization and immunohistochemistry techniques [33].

Analytical, diagnostic and therapeutic context of Gliosis


  1. Primary demyelination in transgenic mice expressing interferon-gamma. Horwitz, M.S., Evans, C.F., McGavern, D.B., Rodriguez, M., Oldstone, M.B. Nat. Med. (1997) [Pubmed]
  2. Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Hsiao, K.K., Scott, M., Foster, D., Groth, D.F., DeArmond, S.J., Prusiner, S.B. Science (1990) [Pubmed]
  3. Control of Müller glial cell proliferation and activation following retinal injury. Dyer, M.A., Cepko, C.L. Nat. Neurosci. (2000) [Pubmed]
  4. FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Beggs, H.E., Schahin-Reed, D., Zang, K., Goebbels, S., Nave, K.A., Gorski, J., Jones, K.R., Sretavan, D., Reichardt, L.F. Neuron (2003) [Pubmed]
  5. Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. Raeber, A.J., Race, R.E., Brandner, S., Priola, S.A., Sailer, A., Bessen, R.A., Mucke, L., Manson, J., Aguzzi, A., Oldstone, M.B., Weissmann, C., Chesebro, B. EMBO J. (1997) [Pubmed]
  6. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease. Weiner, H.L., Lemere, C.A., Maron, R., Spooner, E.T., Grenfell, T.J., Mori, C., Issazadeh, S., Hancock, W.W., Selkoe, D.J. Ann. Neurol. (2000) [Pubmed]
  7. Cognitive, neuroimaging, and pathological studies in a patient with Pick's disease. Lieberman, A.P., Trojanowski, J.Q., Lee, V.M., Balin, B.J., Ding, X.S., Greenberg, J., Morrison, D., Reivich, M., Grossman, M. Ann. Neurol. (1998) [Pubmed]
  8. Microglia density decreases with age in a mouse model of Huntington's disease. Ma, L., Morton, A.J., Nicholson, L.F. Glia (2003) [Pubmed]
  9. Increased GFAp levels in CSF as a marker of organicity in patients with Alzheimer's disease and other types of irreversible chronic organic brain syndrome. Crols, R., Saerens, J., Noppe, M., Lowenthal, A. J. Neurol. (1986) [Pubmed]
  10. Neuropathologic characteristics of spinal cord lesions in sporadic Creutzfeldt-Jakob disease. Iwasaki, Y., Yoshida, M., Hashizume, Y., Kitamoto, T., Sobue, G. Acta Neuropathol. (2005) [Pubmed]
  11. beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Zheng, H., Jiang, M., Trumbauer, M.E., Sirinathsinghji, D.J., Hopkins, R., Smith, D.W., Heavens, R.P., Dawson, G.R., Boyce, S., Conner, M.W., Stevens, K.A., Slunt, H.H., Sisoda, S.S., Chen, H.Y., Van der Ploeg, L.H. Cell (1995) [Pubmed]
  12. Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nalbantoglu, J., Tirado-Santiago, G., Lahsaïni, A., Poirier, J., Goncalves, O., Verge, G., Momoli, F., Welner, S.A., Massicotte, G., Julien, J.P., Shapiro, M.L. Nature (1997) [Pubmed]
  13. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Brown, D.R., Schmidt, B., Kretzschmar, H.A. Nature (1996) [Pubmed]
  14. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F. Nature (1995) [Pubmed]
  15. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Chiesa, R., Piccardo, P., Ghetti, B., Harris, D.A. Neuron (1998) [Pubmed]
  16. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Howland, D.S., Liu, J., She, Y., Goad, B., Maragakis, N.J., Kim, B., Erickson, J., Kulik, J., DeVito, L., Psaltis, G., DeGennaro, L.J., Cleveland, D.W., Rothstein, J.D. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  17. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Nikulina, E., Tidwell, J.L., Dai, H.N., Bregman, B.S., Filbin, M.T. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  18. CM101-mediated recovery of walking ability in adult mice paralyzed by spinal cord injury. Wamil, A.W., Wamil, B.D., Hellerqvist, C.G. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  19. Trophic effects of purines in neurons and glial cells. Rathbone, M.P., Middlemiss, P.J., Gysbers, J.W., Andrew, C., Herman, M.A., Reed, J.K., Ciccarelli, R., Di Iorio, P., Caciagli, F. Prog. Neurobiol. (1999) [Pubmed]
  20. Murine cathepsin F deficiency causes neuronal lipofuscinosis and late-onset neurological disease. Tang, C.H., Lee, J.W., Galvez, M.G., Robillard, L., Mole, S.E., Chapman, H.A. Mol. Cell. Biol. (2006) [Pubmed]
  21. Platelet activating factor receptor expression is associated with neuronal apoptosis in an in vivo model of excitotoxicity. Bennett, S.A., Chen, J., Pappas, B.A., Roberts, D.C., Tenniswood, M. Cell Death Differ. (1998) [Pubmed]
  22. Prolonged expression of AP-1 transcription factors in the rat hippocampus after systemic kainate treatment. Pennypacker, K.R., Thai, L., Hong, J.S., McMillian, M.K. J. Neurosci. (1994) [Pubmed]
  23. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. Saadoun, S., Papadopoulos, M.C., Watanabe, H., Yan, D., Manley, G.T., Verkman, A.S. J. Cell. Sci. (2005) [Pubmed]
  24. Alpha tocopherol decreases lipid peroxidation, neuronal necrosis, and reactive gliosis in reaggregate cultures of fetal rat brain. Halks-Miller, M., Henderson, M., Eng, L.F. J. Neuropathol. Exp. Neurol. (1986) [Pubmed]
  25. Melatonin reduces glial reactivity in the hippocampus, cortex, and cerebellum of streptozotocin-induced diabetic rats. Baydas, G., Reiter, R.J., Yasar, A., Tuzcu, M., Akdemir, I., Nedzvetskii, V.S. Free Radic. Biol. Med. (2003) [Pubmed]
  26. Expression of microtubule-associated protein 2 by reactive astrocytes. Geisert, E.E., Johnson, H.G., Binder, L.I. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  27. A model of human immunodeficiency virus encephalitis in scid mice. Tyor, W.R., Power, C., Gendelman, H.E., Markham, R.B. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  28. Gamma-interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Yong, V.W., Moumdjian, R., Yong, F.P., Ruijs, T.C., Freedman, M.S., Cashman, N., Antel, J.P. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  29. Dominant-negative inhibition of prion replication in transgenic mice. Perrier, V., Kaneko, K., Safar, J., Vergara, J., Tremblay, P., DeArmond, S.J., Cohen, F.E., Prusiner, S.B., Wallace, A.C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  30. Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. Pekny, M., Levéen, P., Pekna, M., Eliasson, C., Berthold, C.H., Westermark, B., Betsholtz, C. EMBO J. (1995) [Pubmed]
  31. A role for ciliary neurotrophic factor as an inducer of reactive gliosis, the glial response to central nervous system injury. Winter, C.G., Saotome, Y., Levison, S.W., Hirsh, D. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  32. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. Irizarry, M.C., Soriano, F., McNamara, M., Page, K.J., Schenk, D., Games, D., Hyman, B.T. J. Neurosci. (1997) [Pubmed]
  33. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Hermanson, M., Funa, K., Hartman, M., Claesson-Welsh, L., Heldin, C.H., Westermark, B., Nistér, M. Cancer Res. (1992) [Pubmed]
  34. Protease inhibitor coinfusion with amyloid beta-protein results in enhanced deposition and toxicity in rat brain. Frautschy, S.A., Horn, D.L., Sigel, J.J., Harris-White, M.E., Mendoza, J.J., Yang, F., Saido, T.C., Cole, G.M. J. Neurosci. (1998) [Pubmed]
  35. Ultrastructural changes in rat optic nerve associated with hyperphenylalaninemia induced by para-chlorophenylalanine and phenylalanine. Avins, L., Guroff, G., Kuwabara, T. J. Neuropathol. Exp. Neurol. (1975) [Pubmed]
  36. Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. Jones, M., Olafson, K., Del Bigio, M.R., Peeling, J., Nath, A. J. Neuropathol. Exp. Neurol. (1998) [Pubmed]
  37. Induction of COX-2 and reactive gliosis by P2Y receptors in rat cortical astrocytes is dependent on ERK1/2 but independent of calcium signalling. Brambilla, R., Neary, J.T., Cattabeni, F., Cottini, L., D'Ippolito, G., Schiller, P.C., Abbracchio, M.P. J. Neurochem. (2002) [Pubmed]
  38. Establishment and characterization of a retinal Müller cell line. Sarthy, V.P., Brodjian, S.J., Dutt, K., Kennedy, B.N., French, R.P., Crabb, J.W. Invest. Ophthalmol. Vis. Sci. (1998) [Pubmed]
WikiGenes - Universities