The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Essential Role of GATA2 in the Negative Regulation of Thyrotropin {beta} Gene by Thyroid Hormone and Its Receptors.

Previously we reported that the negative regulation of the TSHbeta gene by T(3) and its receptor [thyroid hormone receptor ( TR)] is observed in CV1 cells when GATA2 and Pit1 are introduced. Using this system, we further studied the mechanism of TSHbeta inhibition. The negative regulatory element (NRE), which had been reported to mediate T(3)-bound TR (T(3)-TR)-dependent inhibition, is dispensable, because deletion or mutation of NRE did not impair suppression. The reporter construct, TSHbeta-D4-chloramphenicol acetyltransferase, which possesses only the binding sites for Pit1 and GATA2, was activated by GATA2 alone, and this transactivation was specifically inhibited by T(3)-TR. The Zn finger region of GATA2 interacts with the DNA- binding domain of TR in a T(3)-independent manner. The suppression by T(3)-TR was impaired by overexpression of a dominant-negative type TR-associated protein (TRAP) 220, an N- and C-terminal deletion construct, indicating the participation of TRAP220. Chromatin immunoprecipitation assays with a thyrotroph cell line, TalphaT1, revealed that T(3) treatment recruited histone deacetylase 3, reduced the acetylation of histone H4, and caused the dissociation of TRAP220 within 15-30 min. The reduction of histone H4 acetylation was transient, whereas the dissociation of TRAP220 persisted for a longer period. In the negative regulation of the TSHbeta gene by T(3)-TR we report that 1) GATA2 is the major transcriptional activator of the TSHbeta gene, 2) the putative NRE previously reported is not required, 3) TR-DNA-binding domain directly interacts with the Zn finger region of GATA2, and 4) histone deacetylation and TRAP220 dissociation are important.[1]

References

  1. Essential Role of GATA2 in the Negative Regulation of Thyrotropin {beta} Gene by Thyroid Hormone and Its Receptors. Matsushita, A., Sasaki, S., Kashiwabara, Y., Nagayama, K., Ohba, K., Iwaki, H., Misawa, H., Ishizuka, K., Nakamura, H. Mol. Endocrinol. (2007) [Pubmed]
 
WikiGenes - Universities