Role of alternative promoter elements in transcription from the nar promoter of Escherichia coli.
The effects of mutations in the -10, -35, and Fnr box regions of the narGHJI promoter of Escherichia coli were determined by assaying the expression of beta-galactosidase from narG::lacZ fusion plasmids under aerobic and anaerobic conditions. A 1-base change in the -10 hexamer completely abolished expression, whereas a 3-base change to create the consensus TATAAT resulted in significant aerobic as well as anaerobic expression. A mutation in the putative -35 hexamer did not affect anaerobic expression but reduced aerobic expression from the construction with the -10 consensus sequence. A mutation in the Fnr box severely reduced anaerobic expression but did not affect aerobic expression. When the complete 5' region of the nar operon including the NarL box was present, nitrate stimulated both aerobic and anaerobic expression. Stimulation of expression by nitrate occurred in an fnr mutant but not in a narL mutant. We conclude that the rate of transcription of the nar operon is dependent on two distinct modes of transcription. One mode, which occurs at low levels, depends on the -10 and -35 hexamer sequences and is dramatically enhanced by changing the -10 sequence to the consensus TATAAT. The second depends on the -10 and Fnr box sequences but is independent of the -35 sequence. This second mode occurs at a very high level under anaerobic conditions when Fnr is activated and is also enhanced by changing the -10 sequence to the consensus TATAAT. NarL, activated by nitrate, stimulated both modes of transcription, indicating that it does not act through Fnr but that it directly affects the interaction of RNA polymerase with the promoter.[1]References
- Role of alternative promoter elements in transcription from the nar promoter of Escherichia coli. Walker, M.S., DeMoss, J.A. J. Bacteriol. (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg