Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm.
In Escherichia coli, chemotactic sensory transduction is believed to involve phosphoryl transfer for excitation, and changes in receptor methylation for adaptation. In Bacillus subtilis, changes in degree of receptor methylation do not bring about adaptation. Novel methylation reactions are believed to be involved in excitation in B. subtilis. The main chemotaxis proteins of E. coli--CheA, CheB, CheR, CheW and CheY--are present in B. subtilis but play somewhat different roles in the two organisms. Several unique chemotaxis proteins are also present in B. subtilis. Some of the properties of B. subtilis chemotaxis are also seen in Halobacterium halobium, suggesting that there may be a similar underlying mechanism that predates the evolutionary separation of the bacteria from the archaea and eucarya.[1]References
- Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Bischoff, D.S., Ordal, G.W. Mol. Microbiol. (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg