The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.

The action of Clostridium difficile toxins A and B depends on processing and translocation of the catalytic glucosyltransferase domain into the cytosol of target cells where Rho GTPases are modified. Here we studied the processing of the toxins. Dithiothreitol and beta-mercaptoethanol induced auto-cleavage of purified native toxin A and toxin B into approximately 250/210- and approximately 63-kDa fragments. The 63-kDa fragment was identified by mass spectrometric analysis as the N-terminal glucosyltransferase domain. This cleavage was blocked by N-ethylmaleimide or iodoacetamide. Exchange of cysteine 698, histidine 653, or aspartate 587 of toxin B prevented cleavage of full-length recombinant toxin B and of an N-terminal fragment covering residues 1-955 and inhibited cytotoxicity of full-length toxin B. Dithiothreitol synergistically increased the effect of myo-inositol hexakisphosphate, which has been reported to facilitate auto-cleavage of toxin B (Reineke, J., Tenzer, S., Rupnik, M., Koschinski, A., Hasselmayer, O., Schrattenholz, A., Schild, H., and Von Eichel-Streiber, C. (2007) Nature 446, 415-419). N-Ethylmaleimide blocked auto-cleavage induced by the addition of myo-inositol hexakisphosphate, suggesting that cysteine residues are essential for the processing of clostridial glucosylating toxins. Our data indicate that clostridial glucosylating cytotoxins possess an inherent cysteine protease activity related to the cysteine protease of Vibrio cholerae RTX toxin, which is responsible for auto-cleavage of glucosylating toxins.[1]

References

  1. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. Egerer, M., Giesemann, T., Jank, T., Satchell, K.J., Aktories, K. J. Biol. Chem. (2007) [Pubmed]
 
WikiGenes - Universities