The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice.

Deregulation of beta-catenin signaling is an important event in the genesis of several human malignancies including prostate cancer. We investigated the effects of apigenin, a naturally occurring plant flavone, on prostate carcinogenesis in TRAMP mice and further elucidated its mechanism of action. Oral intake of apigenin by gavage at doses of 20 and 50 microg/mouse/d, 6 days per week for 20 weeks, significantly decreased tumor volumes of the prostate as well as completely abolished distant-site metastases to lymph nodes, lungs, and liver in TRAMP mice. Apigenin-treated mice had significantly diminished weights of their genitourinary apparatuses and dorsolateral and ventral prostate lobes, compared with the control group, and showed reduced proliferation and increased apoptosis in the dorsolateral prostates, which correlated with elevated plasma apigenin levels. Continuous intake of apigenin up to 50 weeks by TRAMP mice significantly improved their overall survival. P.o. administration of apigenin further resulted in increased levels of E-cadherin and decreased levels of nuclear beta-catenin, c-Myc, and cyclin D1 in the dorsolateral prostates of TRAMP mice. Similar effects were noted in TRAMP mice with established tumors. Treatment of DU145 human prostate cancer cells with 10 and 20 micromol/L apigenin also increased protein levels of E-cadherin by 27% to 74%, inhibited nuclear translocation of beta-catenin and its retention in the cytoplasm, and decreased c-Myc and cyclin D1 levels, an effect similar to the exposure of cells to beta-catenin small interfering RNA. Our results indicate that apigenin effectively suppressed prostate carcinogenesis in TRAMP mice, at least in part, by blocking beta-catenin signaling.[1]


  1. Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Shukla, S., MacLennan, G.T., Flask, C.A., Fu, P., Mishra, A., Resnick, M.I., Gupta, S. Cancer Res. (2007) [Pubmed]
WikiGenes - Universities