The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Proteome and transcriptional analysis of ethanol-grown Sulfolobus solfataricus P2 reveals ADH2, a potential alcohol dehydrogenase.

Sulfolobus solfataricus P2 was shown to survive on ethanol at various concentrations (0.08-3.97% w/v) as the sole carbon source. The highest ethanol consumption rate was 15.1 mg/L/hr (via GC-MS analysis) in cultures grown on 0.79% w/v ethanol. In vivo metabolic labeling, using 13C universally labeled ethanol, provided evidence for both ethanol uptake and metabolic utilization. Results obtained from isobaric mass tag-facilitated shotgun proteomics (iTRAQ) indicate that on average, 21 and 31% of the 284 proteins identified (with > or = 2 MS/MS) are increased and decreased expression in ethanol cultures compared to glucose control cultures. Preliminary analysis shows >2-fold increase of the zinc-dependent alcohol dehydrogenase, ADH-10 (SSO2536), and the putative ADH-2 (SSO0764) in both translational and transcriptional data (using quantitative RT-PCR), suggesting both proteins are integral to ethanol metabolism. Evidence that ethanol was catabolised into central metabolism via acetyl-CoA intermediates was further indicated by another >2-fold increase in protein expression levels of various acetyl-CoA synthetases. The decreased expression (>2-fold) of isocitrate dehydrogenase at the protein level suggests that the ethanol grown cultures shifted toward the glyoxylate cycle. Subsequently, the activity of ADH-2 was confirmed by overexpression in Escherichia coli, with the resultant purified in vitro enzyme exhibiting an activity that increased with temperature up to 95 degrees C, and giving a specific activity of 1.05 U/mg.[1]

References

  1. Proteome and transcriptional analysis of ethanol-grown Sulfolobus solfataricus P2 reveals ADH2, a potential alcohol dehydrogenase. Chong, P.K., Burja, A.M., Radianingtyas, H., Fazeli, A., Wright, P.C. J. Proteome Res. (2007) [Pubmed]
 
WikiGenes - Universities