The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Endocannabinoids and traumatic brain injury.

In response to traumatic brain injury, there is local and transient accumulation of 2-AG at the site of injury, peaking at 4 h and sustained up to at least 24 h. Neuroprotection exerted by exogenous 2-AG suggests that the formation of 2-AG may serve as a molecular regulator of pathophysiological events, attenuating the brain damage. Inhibition of this protective effect by SR-141716A, a CB(1) cannabinoid receptor antagonist, and the lack of effect of 2-AG in CB(1) knockout mice suggest that 2-AG and the CB(1) receptor may be important in the pathophysiology of traumatic brain injury. 2-AG exerts its neuroprotective effect after traumatic brain injury, at least in part, by inhibition of NF-kappaB transactivation. 2-AG also inhibits, at an early stage (2-4 h), the expression of the main proinflammatory cytokines, TNF-alpha, IL-6, and IL-1beta, and is accompanied by reduction of BBB permeability. Moreover, the CB(1), CB(2), and TRVP1 receptors are expressed on microvascular endothelial cells, and their activation by 2-AG counteracts endothelin (ET-1)-induced cerebral microvascular responses (namely, Ca(2+) mobilization and cytoskeleton rearrangement). This suggests that the functional interaction between 2-AG and ET-1 may provide a potential alternative pathway for abrogating ET-1-inducible vasoconstriction after brain injury and play a role in the neuroprotective effects exerted by 2-AG, as a potent vasodilator.[1]

References

  1. Endocannabinoids and traumatic brain injury. Mechoulam, R., Shohami, E. Mol. Neurobiol. (2007) [Pubmed]
 
WikiGenes - Universities