The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

N-WASP is a putative tumour suppressor in breast cancer cells, in vitro and in vivo, and is associated with clinical outcome in patients with breast cancer.

N-WASP is a key regulator of cell migration and actin polymerisation. We examined the correlation of N-WASP, with human breast cancer, in vitro, in vivo and in clinical breast cancer tissue. Immunohistochemical study of frozen sectioned human breast mammary tissues (n=124) revealed that mammary epithelial cells stained positively for N-WASP and that cancer cells in tumour tissues stained very weakly. Quantitative RT-PCR revealed that breast cancer tissues had significantly lower levels of N-WASP compared with normal background mammary tissues (0.83+/-0.3 vs 13.6+/-13, P=0.03). Although no significantly correlation was found with tumour grade and TNM staging, lower levels of transcript were seen to correlate with clinical outcome following a ten year follow up. Thus tumours from patients with predicted poor prognosis had significantly lower levels than from those with good prognosis (0.098+/-0.14 vs 1.14+/-0.56, P=0.05). Patients with metastatic disease/died of breast cancer had significantly lower levels of N-WASP compared to those remaining disease free (0.04+/-0.02 and 0.47+/-0.3, vs 0.79+/-0.44, P=0.01 and P<0.05 respectively). During in vitro experiments, MDA-MB-231 cells stably transfected with N-WASP (MDA-MB-231(WASP+)) exhibited a significantly reduced in vitro invasiveness and motility compared with control and wild type cells (P<0.0001), had increased adhesiveness (P=0.05) and moreover MDA-MB-231(WASP+ )exhibited reduced in vivo growth (P=0.002). The motogen HGF (50 ng/ml) caused a relocation of N-WASP to the cell periphery in a temporal and spatial response. It is concluded that N-WASP, a member of the N-WASP family may act as a tumour progression suppressor in human breast cancer and may therefore have significant clinical value in this condition.[1]

References

 
WikiGenes - Universities