The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Deletion within the amino-terminal region of Gs alpha impairs its ability to interact with beta gamma subunits and to activate adenylate cyclase.

Proteolytic experiments performed on transducin and Go alpha subunit strongly suggest that the amino-terminal residues of the alpha chain are involved in the interaction with beta gamma subunits. To test the possibility that the same region in Gs may fulfill a similar function, we introduced a deletion in the amino-terminal domain of Gs alpha. The properties of the wild type and the deleted alpha chains were characterized on in vitro translated proteins or after reconstitution of cyc- membranes by in vitro-translated alpha subunits. The mutant (delta 2-29) Gs alpha could still bind guanosine 5'-3-O-(thio)triphosphate, as revealed by its resistance to trypsin proteolysis and was still able to interact with the membrane. However, (delta 2-29) Gs alpha was not ADP-ribosylated by cholera toxin. In contrast to Gs alpha, addition of beta gamma subunits did not increase the rate of sedimentation of (delta 2-29) Gs alpha in sucrose gradients. Binding experiments on reconstituted membranes showed that the coupling to beta-adrenergic receptors was very low with (delta 2-29) Gs alpha. Finally, the mutant did not restore activation of adenylate cyclase of cyc- membranes. We propose that the primary functional defect is the loss of interaction with beta gamma subunits, which secondarily impairs beta gamma-dependent properties such as receptor coupling and cholera toxin-catalyzed ADP-ribosylation. However, it remains to be established that the lack of adenylate cyclase activation also results from this impaired interaction with beta gamma subunits.[1]

References

 
WikiGenes - Universities