The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Gnat1  -  guanine nucleotide binding protein, alpha...

Mus musculus

Synonyms: Gnat-1, Guanine nucleotide-binding protein G(t) subunit alpha-1, Ird1, Ird2, Tralpha, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gnat1


High impact information on Gnat1


Biological context of Gnat1


Anatomical context of Gnat1


Associations of Gnat1 with chemical compounds

  • Furthermore, the GPR domain of LGN potently inhibits receptor-mediated guanine nucleotide exchange and steady-state GTPase activity of transducin [13].
  • This slow current was blocked by l-cis diltiazem, indicating that it was produced by ion flux through the cyclic nucleotide-gated channels of the outer segment; however, it could not have been produced by the normal transduction cascade, since it was recorded from rods lacking transducin [14].
  • Two-bottle preference tests showed that transgenic expression of rod alpha-transducin partly rescued responses to denatonium benzoate, sucrose and the artificial sweetener SC45647, but not to quinine sulfate [15].
  • The rat D4 dopamine receptor couples to cone transducin (Galphat2) to inhibit forskolin-stimulated cAMP accumulation [16].
  • However, increased light-independent activation of transducin (due to bleached opsin) could be demonstrated after the addition of exogenous 11-cis retinal [17].

Physical interactions of Gnat1

  • First, we have demonstrated that transducin beta gamma subunits interact with phosducin along their entire intracellular translocation route, as evident from their co-precipitation in serial tangential sections from light-adapted but not dark-adapted retinas [18].
  • To our knowledge, this is the first report demonstrating that the D4 dopamine receptor functionally couples to a specific G-protein and that a non-opsin-like receptor can couple with a transducin subunit [16].
  • Immobilized PDE gamma binds transducin alpha subunit charged with GTP, PDE alpha and beta subunits, and, unexpectedly, arrestin (S-antigen) [19].
  • Here we demonstrate that transducin colocalizes with the Ca(2+)-binding protein centrin 1 in a specific domain of this cilium [20].
  • Several other G proteins of known functions have been purified: Gi, which couples inhibitory receptors to adenylate cyclase, and transducin which couples photoexcited rhodopsin to cyclic GMP phosphodiesterase [21].

Regulatory relationships of Gnat1


Other interactions of Gnat1

  • Second, we generated a phosducin knockout mouse and found that the degree of light-driven transducin translocation in the rods of these mice was significantly reduced as compared with that observed in the rods of wild type animals [18].
  • An illumination threshold for the Gtalpha movement out of the OS is lower in the RGS9 knockout mice, indicating that the fast inactivation of transducin in the wild-type mice limits its translocation to the IS/ST [8].
  • In this study, double CaBP4/rod alpha-transducin knockout (Cabp4(-/-)Gnat1(-/-)) mice lacking the rod-mediated component of electrophysiologic responses were generated and analyzed to investigate the role of CaBP4 in cones [27].
  • We have probed these mechanisms by examining light-dependent localizations of the transducin-alpha subunit (Gtalpha)in mice lacking the photoreceptor GAP-protein RGS9, or expressing the GTPase-deficient mutant GtalphaQ200L [8].
  • Interaction of transducin-alpha with LGN, a G-protein modulator expressed in photoreceptor cells [13].

Analytical, diagnostic and therapeutic context of Gnat1


  1. Bright light induces retinal degeneration by a transducin-independent mechanism. Brill, E., Patnala, S., Lem, J., Obin, M. Adv. Exp. Med. Biol. (2003) [Pubmed]
  2. Amino acid-specific ADP-ribosylation. Sensitivity to hydroxylamine of [cysteine(ADP-ribose)]protein and [arginine(ADP-ribose)]protein linkages. Hsia, J.A., Tsai, S.C., Adamik, R., Yost, D.A., Hewlett, E.L., Moss, J. J. Biol. Chem. (1985) [Pubmed]
  3. A fully functional rod visual pigment in a blind mammal. A case for adaptive functional reorganization? Janssen, J.W., Bovee-Geurts, P.H., Peeters, Z.P., Bowmaker, J.K., Cooper, H.M., David-Gray, Z.K., Nevo, E., DeGrip, W.J. J. Biol. Chem. (2000) [Pubmed]
  4. Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Woodruff, M.L., Wang, Z., Chung, H.Y., Redmond, T.M., Fain, G.L., Lem, J. Nat. Genet. (2003) [Pubmed]
  5. Evidence for two apoptotic pathways in light-induced retinal degeneration. Hao, W., Wenzel, A., Obin, M.S., Chen, C.K., Brill, E., Krasnoperova, N.V., Eversole-Cire, P., Kleyner, Y., Taylor, A., Simon, M.I., Grimm, C., Remé, C.E., Lem, J. Nat. Genet. (2002) [Pubmed]
  6. Crystal structure at 2.4 angstroms resolution of the complex of transducin betagamma and its regulator, phosducin. Gaudet, R., Bohm, A., Sigler, P.B. Cell (1996) [Pubmed]
  7. Primary structure of the alpha-subunit of transducin and its relationship to ras proteins. Tanabe, T., Nukada, T., Nishikawa, Y., Sugimoto, K., Suzuki, H., Takahashi, H., Noda, M., Haga, T., Ichiyama, A., Kangawa, K. Nature (1985) [Pubmed]
  8. Transducin activation state controls its light-dependent translocation in rod photoreceptors. Kerov, V., Chen, D., Moussaif, M., Chen, Y.J., Chen, C.K., Artemyev, N.O. J. Biol. Chem. (2005) [Pubmed]
  9. Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. Calvert, P.D., Krasnoperova, N.V., Lyubarsky, A.L., Isayama, T., Nicoló, M., Kosaras, B., Wong, G., Gannon, K.S., Margolskee, R.F., Sidman, R.L., Pugh, E.N., Makino, C.L., Lem, J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  10. Characterization of the mouse rod transducin alpha subunit gene. Raport, C.J., Dere, B., Hurley, J.B. J. Biol. Chem. (1989) [Pubmed]
  11. The gene for the alpha-subunit of retinal rod transducin is on mouse chromosome 9. Danciger, M., Kozak, C.A., Farber, D.B. Genomics (1989) [Pubmed]
  12. Immunochemical and electrophoretic characterization of the major pertussis toxin substrate of the RAW264 macrophage cell line. Backlund, P.S., Aksamit, R.R., Unson, C.G., Goldsmith, P., Spiegel, A.M., Milligan, G. Biochemistry (1988) [Pubmed]
  13. Interaction of transducin-alpha with LGN, a G-protein modulator expressed in photoreceptor cells. Kerov, V.S., Natochin, M., Artemyev, N.O. Mol. Cell. Neurosci. (2005) [Pubmed]
  14. Early receptor current of wild-type and transducin knockout mice: photosensitivity and light-induced Ca2+ release. Woodruff, M.L., Lem, J., Fain, G.L. J. Physiol. (Lond.) (2004) [Pubmed]
  15. Partial rescue of taste responses of alpha-gustducin null mice by transgenic expression of alpha-transducin. He, W., Danilova, V., Zou, S., Hellekant, G., Max, M., Margolskee, R.F., Damak, S. Chem. Senses (2002) [Pubmed]
  16. The rat D4 dopamine receptor couples to cone transducin (Galphat2) to inhibit forskolin-stimulated cAMP accumulation. Yamaguchi, I., Harmon, S.K., Todd, R.D., O'Malley, K.L. J. Biol. Chem. (1997) [Pubmed]
  17. Does constitutive phosphorylation protect against photoreceptor degeneration in Rpe65-/- mice? Rohrer, B., Ablonczy, Z., Znoiko, S., Redmond, M., Ma, J.X., Crouch, R. Adv. Exp. Med. Biol. (2003) [Pubmed]
  18. Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse. Sokolov, M., Strissel, K.J., Leskov, I.B., Michaud, N.A., Govardovskii, V.I., Arshavsky, V.Y. J. Biol. Chem. (2004) [Pubmed]
  19. Expression of mouse rod photoreceptor cGMP phosphodiesterase gamma subunit in bacteria. Qin, N., Baehr, W. FEBS Lett. (1993) [Pubmed]
  20. Calcium-dependent assembly of centrin-G-protein complex in photoreceptor cells. Pulvermüller, A., Giessl, A., Heck, M., Wottrich, R., Schmitt, A., Ernst, O.P., Choe, H.W., Hofmann, K.P., Wolfrum, U. Mol. Cell. Biol. (2002) [Pubmed]
  21. GTP binding proteins: a key role in cellular communication. Bockaert, J., Homburger, V., Rouot, B. Biochimie (1987) [Pubmed]
  22. Prolonged photoresponses and defective adaptation in rods of Gbeta5-/- mice. Krispel, C.M., Chen, C.K., Simon, M.I., Burns, M.E. J. Neurosci. (2003) [Pubmed]
  23. Melanopsin--shedding light on the elusive circadian photopigment. Brown, R.L., Robinson, P.R. Chronobiol. Int. (2004) [Pubmed]
  24. Transducin translocation in rods is triggered by saturation of the GTPase-activating complex. Lobanova, E.S., Finkelstein, S., Song, H., Tsang, S.H., Chen, C.K., Sokolov, M., Skiba, N.P., Arshavsky, V.Y. J. Neurosci. (2007) [Pubmed]
  25. Rac and Cdc42-dependent regulation of c-Jun N-terminal kinases by the delta-opioid receptor. Kam, A.Y., Chan, A.S., Wong, Y.H. J. Neurochem. (2003) [Pubmed]
  26. Constitutive activation of phototransduction by K296E opsin is not a cause of photoreceptor degeneration. Li, T., Franson, W.K., Gordon, J.W., Berson, E.L., Dryja, T.P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  27. A critical role of CaBP4 in the cone synapse. Maeda, T., Lem, J., Palczewski, K., Haeseleer, F. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  28. Piscine (Sparus aurata) alpha subunit of the G-protein transducin is homologous to mammalian cone and rod transducin. Funkenstein, B., Jakowlew, S.B. Vision Res. (1997) [Pubmed]
  29. The presence of a Leu-Gly-Asn repeat-enriched protein (LGN), a putative binding partner of transducin, in ROD photoreceptors. Nair, K.S., Mendez, A., Blumer, J.B., Rosenzweig, D.H., Slepak, V.Z. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
WikiGenes - Universities