The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Differential expression of three glutamate receptor genes in developing rat brain: an in situ hybridization study.

Non-N-methyl-D-aspartate glutamate receptors (GluRs) are encoded by a gene family, known members of which are designated GluR-1, -2, -3, -4, and -5. The present study examined the developmental pattern of GluR-1, -2, and -3 gene expression in rat brain. In situ hybridization revealed different spatial patterns throughout the brain for the cognate mRNAs at all ages examined, as well as different temporal patterns during development. In the adult all three mRNAs were expressed prominently in the pyramidal and granule layers of the hippocampus and in the Purkinje cell layer of the cerebellum, where detailed differences were apparent at the cellular level. In neocortex, GluR-2 mRNA exhibited prominent lamination and regional differences, which were less marked for GluR-1 and -3 mRNAs. In caudate-putamen GluR-2 mRNA was at high levels, but GluR-1 and -3 mRNAs were not. At early ages transcripts were transiently elevated relative to adult levels. GluR-1 mRNA reached peak expression in cortex at postnatal day 14 (P14) (225% of adult), in striatum at P4 (255% of adult), in hippocampus at P14 (195% of adult), and in cerebellum at P21 (150% of adult). GluR-3 exhibited more modest peaks in neocortex and hippocampus. In contrast, GluR-2 mRNA was at near adult levels throughout the first days of postnatal life and exhibited a peak only in cerebellum at P14 (168% of adult). The finding of differential developmental regulation of the GluR-1, -2, and -3 genes indicates that the receptors they encode may have different influences on synaptic plasticity, neuronal survival, and susceptibility to excitatory amino acid toxicity.[1]

References

  1. Differential expression of three glutamate receptor genes in developing rat brain: an in situ hybridization study. Pellegrini-Giampietro, D.E., Bennett, M.V., Zukin, R.S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
 
WikiGenes - Universities