The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Neocortex

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Neocortex

 

Psychiatry related information on Neocortex

 

High impact information on Neocortex

  • X-SCLH/LIS syndrome is a neuronal migration disorder with disruption of the six-layered neocortex [11].
  • Clark et al. conclude from their analysis of volumetric brain proportions ("cerebro-types") that cerebellum size is invariant across mammalian taxonomic groups, the neocortex and cerebellum do not co-vary in size (in contradiction to ref. 1), and cerebrotype-based measures identify directional changes in brain architecture [12].
  • Signals from the same receptor are targeted to multiple olfactory cortical areas, permitting the parallel, and perhaps differential, processing of inputs from a single receptor before delivery to the neocortex and limbic system [13].
  • Acetylcholine is thus not only necessary for learning and memory, as previously argued, but its presence within the neocortex is also sufficient to ameliorate learning deficits and restore memory following damage to the nucleus basalis [14].
  • By co-immunoprecipitation with subunit-specific antibodies, we present here direct evidence that NMDA receptors exist in rat neocortex as heteromeric complexes of considerable heterogeneity, some containing both NR2A and NR2B subunits [15].
 

Chemical compound and disease context of Neocortex

 

Biological context of Neocortex

 

Anatomical context of Neocortex

 

Associations of Neocortex with chemical compounds

  • We report here that in the presence of picrotoxin, a gamma-aminobutyric acid (GABA) antagonist, these segments spontaneously generate synchronized rhythmic bursts comparable with the interictal epileptiform discharges observed in the hippocampus and neocortex in the presence of penicillin [31].
  • This indicates that in the neocortex the activation threshold of the NMDA-mechanism and consequently the susceptibility to LTP, are strongly influenced by inhibitory processes [32].
  • Methylazoxymethanol treatment of fetal rats results in abnormally dense noradrenergic innervation of neocortex [33].
  • Cholinergic markers in neocortex were reduced, while catecholamine and indoleamine metabolism was largely unaffected at this time [34].
  • Inhibitors and promoters of thalamic neuron adhesion and outgrowth in embryonic neocortex: functional association with chondroitin sulfate [35].
 

Gene context of Neocortex

  • Regulation of area identity in the mammalian neocortex by Emx2 and Pax6 [36].
  • Mice deficient in p35--an activator of cyclin-dependent kinase 5 (Cdk5)--are characterized by a neocortex that has inverted layering [37].
  • Tbr-1 and Id-2 expression in the neocortex have discontinuities that define molecularly distinct neocortical areas [38].
  • EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors [39].
  • Moreover, the neocortex of young Fyn mutants exhibited a significant in vivo reduction in these AMPA receptor proteins but not in their mRNA levels [40].
 

Analytical, diagnostic and therapeutic context of Neocortex

  • We used in situ hybridization techniques to map the anatomical distribution of precursor amyloid-beta-protein mRNA in the neocortex of brains from three subjects with no known neurologic disease and from five patients with Alzheimer disease [41].
  • The objective of this MRI-guided 2-[(18)F]fluoro-2-deoxy-d-glucose/positron-emission tomography (FDG/PET) study was to examine the hypothesis that among normal elderly subjects, EC METglu reductions predict decline and the involvement of the Hip and neocortex [42].
  • Quantitative RT-PCR analyses from the same TLE neocortex specimens revealed that GABA(A)-receptor beta 1, beta 2, beta 3, and gamma 2 subunit mRNAs were significantly overexpressed (8- to 33-fold) compared with control autopsy tissues [43].
  • As revealed with 5-HT immunocytochemistry, BDNF infusions into the neocortex of intact (non-PCA-lesioned) rats caused a substantial increase in 5-HT axon density in a 3 mm diameter region surrounding the cannula tip [44].
  • Northern blot analysis showed that the MARCKS mRNA level was higher in the association areas than in the primary sensory and motor areas of the cerebral neocortex [45].

References

  1. Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Niwa, K., Younkin, L., Ebeling, C., Turner, S.K., Westaway, D., Younkin, S., Ashe, K.H., Carlson, G.A., Iadecola, C. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  2. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Hirsch, E.C., Graybiel, A.M., Duyckaerts, C., Javoy-Agid, F. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  3. Alterations in local cerebral glucose utilization during hemorrhagic hypotension in the rat. Savaki, H.E., Macpherson, H., McCulloch, J. Circ. Res. (1982) [Pubmed]
  4. Essential role of the fosB gene in molecular, cellular, and behavioral actions of chronic electroconvulsive seizures. Hiroi, N., Marek, G.J., Brown, J.R., Ye, H., Saudou, F., Vaidya, V.A., Duman, R.S., Greenberg, M.E., Nestler, E.J. J. Neurosci. (1998) [Pubmed]
  5. Synchrony of clonal cell proliferation and contiguity of clonally related cells: production of mosaicism in the ventricular zone of developing mouse neocortex. Cai, L., Hayes, N.L., Nowakowski, R.S. J. Neurosci. (1997) [Pubmed]
  6. Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein. Kawabata, S., Higgins, G.A., Gordon, J.W. Nature (1991) [Pubmed]
  7. A genetic animal model of human neocortical heterotopia associated with seizures. Lee, K.S., Schottler, F., Collins, J.L., Lanzino, G., Couture, D., Rao, A., Hiramatsu, K., Goto, Y., Hong, S.C., Caner, H., Yamamoto, H., Chen, Z.F., Bertram, E., Berr, S., Omary, R., Scrable, H., Jackson, T., Goble, J., Eisenman, L. J. Neurosci. (1997) [Pubmed]
  8. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer's disease. Meguro, K., Blaizot, X., Kondoh, Y., Le Mestric, C., Baron, J.C., Chavoix, C. Brain (1999) [Pubmed]
  9. The selfish brain: competition for energy resources. Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K.M., Conrad, M., Schultes, B., Born, J., Fehm, H.L. Neuroscience and biobehavioral reviews. (2004) [Pubmed]
  10. Autism in tuberous sclerosis complex is related to both cortical and subcortical dysfunction. Asano, E., Chugani, D.C., Muzik, O., Behen, M., Janisse, J., Rothermel, R., Mangner, T.J., Chakraborty, P.K., Chugani, H.T. Neurology (2001) [Pubmed]
  11. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. des Portes, V., Pinard, J.M., Billuart, P., Vinet, M.C., Koulakoff, A., Carrié, A., Gelot, A., Dupuis, E., Motte, J., Berwald-Netter, Y., Catala, M., Kahn, A., Beldjord, C., Chelly, J. Cell (1998) [Pubmed]
  12. How did brains evolve? Barton, R.A. Nature (2002) [Pubmed]
  13. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Zou, Z., Horowitz, L.F., Montmayeur, J.P., Snapper, S., Buck, L.B. Nature (2001) [Pubmed]
  14. Essential role of neocortical acetylcholine in spatial memory. Winkler, J., Suhr, S.T., Gage, F.H., Thal, L.J., Fisher, L.J. Nature (1995) [Pubmed]
  15. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N., Jan, L.Y. Nature (1994) [Pubmed]
  16. Localization of superoxide dismutases in Alzheimer's disease and Down's syndrome neocortex and hippocampus. Furuta, A., Price, D.L., Pardo, C.A., Troncoso, J.C., Xu, Z.S., Taniguchi, N., Martin, L.J. Am. J. Pathol. (1995) [Pubmed]
  17. Evidence that the beta-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of abeta by zinc. Cuajungco, M.P., Goldstein, L.E., Nunomura, A., Smith, M.A., Lim, J.T., Atwood, C.S., Huang, X., Farrag, Y.W., Perry, G., Bush, A.I. J. Biol. Chem. (2000) [Pubmed]
  18. Redistribution of glutamate and glutamine in slices of human neocortex exposed to combined hypoxia and glucose deprivation in vitro. Aas, J.E., Berg-Johnsen, J., Hegstad, E., Laake, J.H., Langmoen, I.A., Ottersen, O.P. J. Cereb. Blood Flow Metab. (1993) [Pubmed]
  19. Posthypoxic treatment with felbamate is neuroprotective in a rat model of hypoxia-ischemia. Wasterlain, C.G., Adams, L.M., Schwartz, P.H., Hattori, H., Sofia, R.D., Wichmann, J.K. Neurology (1993) [Pubmed]
  20. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer's disease. Bowen, D.M., Allen, S.J., Benton, J.S., Goodhardt, M.J., Haan, E.A., Palmer, A.M., Sims, N.R., Smith, C.C., Spillane, J.A., Esiri, M.M., Neary, D., Snowdon, J.S., Wilcock, G.K., Davison, A.N. J. Neurochem. (1983) [Pubmed]
  21. Glycine enhances NMDA-receptor mediated synaptic potentials in neocortical slices. Thomson, A.M., Walker, V.E., Flynn, D.M. Nature (1989) [Pubmed]
  22. RNAi reveals doublecortin is required for radial migration in rat neocortex. Bai, J., Ramos, R.L., Ackman, J.B., Thomas, A.M., Lee, R.V., LoTurco, J.J. Nat. Neurosci. (2003) [Pubmed]
  23. A critical temporal requirement for the retinoblastoma protein family during neuronal determination. Slack, R.S., El-Bizri, H., Wong, J., Belliveau, D.J., Miller, F.D. J. Cell Biol. (1998) [Pubmed]
  24. Laminar organization and age-related loss of cholinergic receptors in temporal neocortex of rhesus monkey. Wagster, M.V., Whitehouse, P.J., Walker, L.C., Kellar, K.J., Price, D.L. J. Neurosci. (1990) [Pubmed]
  25. Synaptic transmission in human neocortex removed for treatment of intractable epilepsy in children. Wuarin, J.P., Kim, Y.I., Cepeda, C., Tasker, J.G., Walsh, J.P., Peacock, W.J., Buchwald, N.A., Dudek, F.E. Ann. Neurol. (1990) [Pubmed]
  26. NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats. Tsumoto, T., Hagihara, K., Sato, H., Hata, Y. Nature (1987) [Pubmed]
  27. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Anderson, S.A., Eisenstat, D.D., Shi, L., Rubenstein, J.L. Science (1997) [Pubmed]
  28. Hypothalamic gamma-aminobutyric acid neurons project to the neocortex. Vincent, S.R., Hökfelt, T., Skirboll, L.R., Wu, J.Y. Science (1983) [Pubmed]
  29. Neurotrophin-3 is required for appropriate establishment of thalamocortical connections. Ma, L., Harada, T., Harada, C., Romero, M., Hebert, J.M., McConnell, S.K., Parada, L.F. Neuron (2002) [Pubmed]
  30. Dendritic GABA release depresses excitatory transmission between layer 2/3 pyramidal and bitufted neurons in rat neocortex. Zilberter, Y., Kaiser, K.M., Sakmann, B. Neuron (1999) [Pubmed]
  31. Single neurones can initiate synchronized population discharge in the hippocampus. Miles, R., Wong, R.K. Nature (1983) [Pubmed]
  32. Long-term potentiation and NMDA receptors in rat visual cortex. Artola, A., Singer, W. Nature (1987) [Pubmed]
  33. Methylazoxymethanol treatment of fetal rats results in abnormally dense noradrenergic innervation of neocortex. Johnston, M.V., Grzanna, R., Coyle, J.T. Science (1979) [Pubmed]
  34. Long-term neuropathological and neurochemical effects of nucleus basalis lesions in the rat. Arendash, G.W., Millard, W.J., Dunn, A.J., Meyer, E.M. Science (1987) [Pubmed]
  35. Inhibitors and promoters of thalamic neuron adhesion and outgrowth in embryonic neocortex: functional association with chondroitin sulfate. Emerling, D.E., Lander, A.D. Neuron (1996) [Pubmed]
  36. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Bishop, K.M., Goudreau, G., O'Leary, D.D. Science (2000) [Pubmed]
  37. Layering defect in p35 deficiency is linked to improper neuronal-glial interaction in radial migration. Gupta, A., Sanada, K., Miyamoto, D.T., Rovelstad, S., Nadarajah, B., Pearlman, A.L., Brunstrom, J., Tsai, L.H. Nat. Neurosci. (2003) [Pubmed]
  38. T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Bulfone, A., Smiga, S.M., Shimamura, K., Peterson, A., Puelles, L., Rubenstein, J.L. Neuron (1995) [Pubmed]
  39. EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Hamasaki, T., Leingärtner, A., Ringstedt, T., O'Leary, D.D. Neuron (2004) [Pubmed]
  40. Growth factor-mediated Fyn signaling regulates alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression in rodent neocortical neurons. Narisawa-Saito, M., Silva, A.J., Yamaguchi, T., Hayashi, T., Yamamoto, T., Nawa, H. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  41. Distribution of precursor amyloid-beta-protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques. Lewis, D.A., Higgins, G.A., Young, W.G., Goldgaber, D., Gajdusek, D.C., Wilson, M.C., Morrison, J.H. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  42. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). de Leon, M.J., Convit, A., Wolf, O.T., Tarshish, C.Y., DeSanti, S., Rusinek, H., Tsui, W., Kandil, E., Scherer, A.J., Roche, A., Imossi, A., Thorn, E., Bobinski, M., Caraos, C., Lesbre, P., Schlyer, D., Poirier, J., Reisberg, B., Fowler, J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  43. Phosphatase inhibitors remove the run-down of gamma-aminobutyric acid type A receptors in the human epileptic brain. Palma, E., Ragozzino, D.A., Di Angelantonio, S., Spinelli, G., Trettel, F., Martinez-Torres, A., Torchia, G., Arcella, A., Di Gennaro, G., Quarato, P.P., Esposito, V., Cantore, G., Miledi, R., Eusebi, F. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  44. Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. Mamounas, L.A., Blue, M.E., Siuciak, J.A., Altar, C.A. J. Neurosci. (1995) [Pubmed]
  45. Northern blot and in situ hybridization analyses of MARCKS mRNA expression in the cerebral cortex of the macaque monkey. Higo, N., Oishi, T., Yamashita, A., Matsuda, K., Hayashi, M. Cereb. Cortex (2002) [Pubmed]
 
WikiGenes - Universities