The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Gria1  -  glutamate receptor, ionotropic, AMPA 1

Rattus norvegicus

Synonyms: AMPA-selective glutamate receptor 1, GluA1, GluR-1, GluR-A, GluR-K1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gria1


Psychiatry related information on Gria1

  • The antidepressant-induced increase in the number of GluR1- and GluR2/3-containing AMPARs at the synapses may indicate an enhanced AMPAR-mediated synaptic transmission which could help to counteract the alterations in neuronal connectivity which appear to underlie the pathophysiology of mood disorders [5].
  • Acute exposure of animals to voluntary wheel running induced a significant decrease in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluR1 subunit mRNA levels (p<0.01), while repeated voluntary physical activity increased levels of GluR1 mRNA in the ventral tegmentum (p<0.05) [6].
  • The finding that GluR activity is significantly depressed at conditions characteristic of classical PKU indicates a potentially important contribution of impaired GluR function to PKU-related mental retardation and provides important insights into the potential physiological consequences of impaired GluR function [7].
  • What role do GluR1 subunits play in drug abuse [8]?
  • For the first time, the GluR-1 subtype of AMPA receptor was identified in the sympathetic nervous system of neonatal swine, an animal model of human development and heart disease [9].

High impact information on Gria1

  • The rapid scaling induced by NMDAR mini blockade is mediated by increased synaptic expression of surface GluR1 and the transient incorporation of Ca2+-permeable AMPA receptors at synapses; both of these changes are implemented locally within dendrites and require dendritic protein synthesis [10].
  • Indeed, viral-mediated overexpression of both GluR1 and GluR2 in nucleus accumbens shell neurons facilitates extinction of cocaine- but not sucrose-seeking responses [11].
  • A single extinction training session, when conducted during GluR subunit overexpression, attenuates stress-induced relapse to cocaine seeking even after GluR overexpression declines [11].
  • Here we show that LTP and LTD reversibly modify the phosphorylation of the AMPA receptor GluR1 subunit [12].
  • On the basis of amino-acid sequence and functional relationships between GluR0 and eukaryotic GluRs, we propose that a prokaryotic GluR was the precursor to eukaryotic GluRs [13].

Chemical compound and disease context of Gria1

  • However a chimeric protein made of the luminal and transmembrane domain of the influenza virus hemagglutinin (HA) fused to the GluR1 C-terminal cytoplasmic tail (HaemR1) is detected in the somatodendritic domain [14].

Biological context of Gria1

  • We propose that GluR1 controls the exocytosis and GluR2/3, the recycling and endocytosis of AMPA receptors [15].
  • Using 12P3, we demonstrate that a brief exposure of a rat cerebellar slice to AMPA leads to transient phosphorylation of the GluR subunits in Purkinje cell dendrites [16].
  • GluR1 possesses a C-terminal consensus sequence for interactions with PDZ domains of SAPs [17].
  • We examined GluR1, 2, and 3 gene expression in embryonic, neonatal, and adult rat brain by northern analysis under conditions of high stringency [18].
  • To determine the magnitude and duration of these changes we examined the post-slicing expression kinetics of three classes of genes known to be implicated in long-term synaptic plasticity: glutamate AMPA receptors (GluR), transcription factors and neurotrophins [19].

Anatomical context of Gria1


Associations of Gria1 with chemical compounds


Physical interactions of Gria1

  • Similar to other glutamate receptor subunit promoters, the GluR1 promoter lacks TATA and CAAT elements in that region but binds Sp1 proteins at two sites [27].
  • Samples of paraventricular and lateral geniculate nuclei stained with GluR1 and of reticular nucleus as well as ventrobasal complex stained with GluR4 were used for the ultrastructural study [28].

Co-localisations of Gria1


Regulatory relationships of Gria1

  • In conclusion the results reported in the present paper reveal a specific regulation of GluR gene expression in the granule cells of the hippocampal dentate gyrus and stimulate further investigation on the functional role of the GluR-3 subunit in the receptor-channel complex [1].
  • GluR1-/GluR2-expressing neurons and GluR1-expressing/GluR2-undetectable neurons comprised approximately 1/10 each [31].
  • GluR1 expression was delayed in MA-PE rats and the percentage of Fos-positive GnRH neurones expressing GluR1 peaked at 20.00 h [32].
  • The BDNF-triggered increases in PDZ proteins resulted in the elevation of their total association with the AMPA receptors GluR1 and GluR2/3, which led to the increase in AMPA receptor proteins [33].
  • We have used these antibodies to demonstrate that serine 831 is specifically phosphorylated by CaM kinase II in transfected cells expressing GluR1 as well as in hippocampal slice preparations [34].

Other interactions of Gria1


Analytical, diagnostic and therapeutic context of Gria1


  1. Changes in gene expression of AMPA-selective glutamate receptor subunits induced by status epilepticus in rat brain. Condorelli, D.F., Belluardo, N., Mudò, G., Dell'Albani, P., Jiang, X., Giuffrida-Stella, A.M. Neurochem. Int. (1994) [Pubmed]
  2. Ischemia-induced alterations of AMPA-type glutamate receptor subunit. Expression patterns in the rat retina--an immunocytochemical study. Dijk, F., Kamphuis, W. Brain Res. (2004) [Pubmed]
  3. Light-induced retinal degeneration suppresses developmental progression of flip-to-flop alternative splicing in GluR1. Harada, T., Harada, C., Sekiguchi, M., Wada, K. J. Neurosci. (1998) [Pubmed]
  4. Relationship of altered glutamate receptor subunit mRNA expression to acute cell loss after spinal cord contusion. Grossman, S.D., Rosenberg, L.J., Wrathall, J.R. Exp. Neurol. (2001) [Pubmed]
  5. Chronic antidepressant treatment increases the membrane expression of AMPA receptors in rat hippocampus. Martinez-Turrillas, R., Frechilla, D., Del Río, J. Neuropharmacology (2002) [Pubmed]
  6. Voluntary wheel running modulates glutamate receptor subunit gene expression and stress hormone release in Lewis rats. Makatsori, A., Duncko, R., Schwendt, M., Moncek, F., Johansson, B.B., Jezova, D. Psychoneuroendocrinology (2003) [Pubmed]
  7. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. Glushakov, A.V., Dennis, D.M., Sumners, C., Seubert, C.N., Martynyuk, A.E. J. Neurosci. Res. (2003) [Pubmed]
  8. What role do GluR1 subunits play in drug abuse? Stephens, D.N., Mead, A.N. Trends Neurosci. (2003) [Pubmed]
  9. Presence of a non-NMDA glutamate receptor subtype in the sympathetic nervous system of neonatal swine. Ruggiero, D.A., Gootman, P.M., Sica, A. J. Auton. Nerv. Syst. (1998) [Pubmed]
  10. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Sutton, M.A., Ito, H.T., Cressy, P., Kempf, C., Woo, J.C., Schuman, E.M. Cell (2006) [Pubmed]
  11. Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Sutton, M.A., Schmidt, E.F., Choi, K.H., Schad, C.A., Whisler, K., Simmons, D., Karanian, D.A., Monteggia, L.M., Neve, R.L., Self, D.W. Nature (2003) [Pubmed]
  12. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F., Huganir, R.L. Nature (2000) [Pubmed]
  13. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Chen, G.Q., Cui, C., Mayer, M.L., Gouaux, E. Nature (1999) [Pubmed]
  14. Involvement of the proximal C terminus of the AMPA receptor subunit GluR1 in dendritic sorting. Ruberti, F., Dotti, C.G. J. Neurosci. (2000) [Pubmed]
  15. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Passafaro, M., Piëch, V., Sheng, M. Nat. Neurosci. (2001) [Pubmed]
  16. Transient and persistent phosphorylation of AMPA-type glutamate receptor subunits in cerebellar Purkinje cells. Nakazawa, K., Mikawa, S., Hashikawa, T., Ito, M. Neuron (1995) [Pubmed]
  17. SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. Leonard, A.S., Davare, M.A., Horne, M.C., Garner, C.C., Hell, J.W. J. Biol. Chem. (1998) [Pubmed]
  18. Developmental regulation of mRNAs encoding rat brain kainate/AMPA receptors: a northern analysis study. Durand, G.M., Zukin, R.S. J. Neurochem. (1993) [Pubmed]
  19. Profound molecular changes following hippocampal slice preparation: loss of AMPA receptor subunits and uncoupled mRNA/protein expression. Taubenfeld, S.M., Stevens, K.A., Pollonini, G., Ruggiero, J., Alberini, C.M. J. Neurochem. (2002) [Pubmed]
  20. Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons. Lee, S.H., Simonetta, A., Sheng, M. Neuron (2004) [Pubmed]
  21. Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. Bernard, V., Somogyi, P., Bolam, J.P. J. Neurosci. (1997) [Pubmed]
  22. Expression of AMPA-selective glutamate receptor subunits in morphologically defined neurons of the mammalian cochlear nucleus. Hunter, C., Petralia, R.S., Vu, T., Wenthold, R.J. J. Neurosci. (1993) [Pubmed]
  23. Cellular localizations of AMPA glutamate receptors within the basal forebrain magnocellular complex of rat and monkey. Martin, L.J., Blackstone, C.D., Levey, A.I., Huganir, R.L., Price, D.L. J. Neurosci. (1993) [Pubmed]
  24. Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. Niedzielski, A.S., Wenthold, R.J. J. Neurosci. (1995) [Pubmed]
  25. Hormonal regulation of glutamate receptor gene expression in the anteroventral periventricular nucleus of the hypothalamus. Gu, G., Varoqueaux, F., Simerly, R.B. J. Neurosci. (1999) [Pubmed]
  26. Learning-induced glutamate receptor phosphorylation resembles that induced by long term potentiation. Shukla, K., Kim, J., Blundell, J., Powell, C.M. J. Biol. Chem. (2007) [Pubmed]
  27. Functional organization of the GluR1 glutamate receptor promoter. Borges, K., Dingledine, R. J. Biol. Chem. (2001) [Pubmed]
  28. Distribution of AMPA selective glutamate receptors in the thalamus of adult rats and during postnatal development. A light and ultrastructural immunocytochemical study. Spreafico, R., Frassoni, C., Arcelli, P., Battaglia, G., Wenthold, R.J., De Biasi, S. Brain Res. Dev. Brain Res. (1994) [Pubmed]
  29. Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons. Richmond, S.A., Irving, A.J., Molnar, E., McIlhinney, R.A., Michelangeli, F., Henley, J.M., Collingridge, G.L. Neuroscience (1996) [Pubmed]
  30. Presynaptic cytomatrix protein bassoon is localized at both excitatory and inhibitory synapses of rat brain. Richter, K., Langnaese, K., Kreutz, M.R., Olias, G., Zhai, R., Scheich, H., Garner, C.C., Gundelfinger, E.D. J. Comp. Neurol. (1999) [Pubmed]
  31. Combinations of AMPA receptor subunit expression in individual cortical neurons correlate with expression of specific calcium-binding proteins. Kondo, M., Sumino, R., Okado, H. J. Neurosci. (1997) [Pubmed]
  32. Expression of AMPA receptor subunits (GluR1-GluR4) in gonadotrophin-releasing hormone neurones of young and middle-aged persistently oestrous rats during the steroid-induced luteinising hormone surge. Bailey, J.D., Centers, A., Jennes, L. J. Neuroendocrinol. (2006) [Pubmed]
  33. Brain-derived neurotrophic factor signal enhances and maintains the expression of AMPA receptor-associated PDZ proteins in developing cortical neurons. Jourdi, H., Iwakura, Y., Narisawa-Saito, M., Ibaraki, K., Xiong, H., Watanabe, M., Hayashi, Y., Takei, N., Nawa, H. Dev. Biol. (2003) [Pubmed]
  34. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. Mammen, A.L., Kameyama, K., Roche, K.W., Huganir, R.L. J. Biol. Chem. (1997) [Pubmed]
  35. The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. Tölle, T.R., Berthele, A., Zieglgänsberger, W., Seeburg, P.H., Wisden, W. J. Neurosci. (1993) [Pubmed]
  36. Light microscopic study of GluR1 and calbindin expression in interneurons of neocortical microgyral malformations. Kharazia, V.N., Jacobs, K.M., Prince, D.A. Neuroscience (2003) [Pubmed]
  37. Colocalization of ionotropic glutamate receptor subunits with NADPH-diaphorase-containing neurons in the rat mesopontine tegmentum. Inglis, W.L., Semba, K. J. Comp. Neurol. (1996) [Pubmed]
  38. Absence of antibodies to non-NMDA glutamate-receptor subunits in paraneoplastic cerebellar degeneration. Degenhardt, A., Duvoisin, R.M., Frennier, J., Gultekin, S.H., Rosenfeld, M.R., Posner, J.B., Dalmau, J. Neurology (1998) [Pubmed]
  39. Multiplicity of glutamate receptor subunits in single striatal neurons: an RNA amplification study. Ghasemzadeh, M.B., Sharma, S., Surmeier, D.J., Eberwine, J.H., Chesselet, M.F. Mol. Pharmacol. (1996) [Pubmed]
  40. Gonadal steroids target AMPA glutamate receptor-containing neurons in the rat hypothalamus, septum and amygdala: a morphological and biochemical study. Diano, S., Naftolin, F., Horvath, T.L. Endocrinology (1997) [Pubmed]
  41. AMPA-selective glutamate receptor subunits in astroglial cultures. Condorelli, D.F., Dell'Albani, P., Corsaro, M., Barresi, V., Giuffrida Stella, A.M. J. Neurosci. Res. (1993) [Pubmed]
WikiGenes - Universities