The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Lessons from nature: biomimetic organocatalytic carbon-carbon bond formations.

Nature utilizes simple C2 and C3 building blocks, such as dihydroxyacetone phosphate (DHAP), phosphoenolpyruvate (PEP), and the "active aldehyde" in various enzyme-catalyzed carbon-carbon bond formations to efficiently build up complex organic molecules. In this Perspective, we describe the transition from using enantiopure chemical synthetic equivalents of these building blocks, employing our SAMP/RAMP hydrazone methodology and metalated chiral alpha-amino nitriles, to the asymmetric organocatalytic versions developed in our laboratory. Following this biomimetic strategy, the DHAP equivalent 2,2-dimethyl-1,3-dioxan-5-one (dioxanone) has been used in the proline-catalyzed synthesis of carbohydrates, aminosugars, carbasugars, polyoxamic acid, and various sphingosines. Proline-catalyzed aldol reactions involving a PEP-like equivalent have also allowed for the asymmetric synthesis of ulosonic acid precursors. By mimicking the "active aldehyde" nucleophilic acylations in Nature catalyzed by the thiamine-dependent enzyme, transketolase, enantioselective N-heterocyclic carbene-catalyzed benzoin and Stetter reactions have been developed. Finally, based on Nature's use of domino reactions to convert simple building blocks into complex and highly functionalized molecules, we report on our development of biomimetic asymmetric multicomponent domino reactions which couple enamine and iminium catalysis.[1]

References

 
WikiGenes - Universities