Hormonal release of programmed behavior in silk moths: probable mediation by cyclic AMP.
The eclosion hormone triggers a stereotyped preprogrammed pattern of behavior in silk moths. The effects of the hormone were duplicated by the injection of dibutyryl adenosine 3', 5'-monophosphate, adenosine 3', 5'-monophosphate (cyclic AMP), or guanosine 3', 5'-monophosphate (cyclic GMP) into theophylline-treated pharate moths. Treatment with theophylline reduced the latency of the response to a low dose of hormone, presumably by blocking phosphodiesterase. Endogenous levels of cyclic AMP, but not cyclic GMP, increased significantly in the central nervous system within 10 minutes after hormone injection. We conclude that an early step leading to the release of the eclosion motor program is an increase in cyclic AMP in target neurons of the central nervous system.[1]References
- Hormonal release of programmed behavior in silk moths: probable mediation by cyclic AMP. Truman, J.W., Fallon, A.M., Wyatt, G.R. Science (1976) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg