The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury.

Polyethylene glycol (PEG) has been reported to possess fusogenic properties that may confer neuroprotection after spinal cord injury (SCI), but there is uncertainty regarding the mechanisms of PEG in vivo and the robustness of its protective effects. We hypothesized that PEG promotes preservation of cytoskeletal proteins associated with white matter protection and neurobehavioral recovery after SCI. In proof-of-principle experiments using a pin-drop organotypic culture model of SCI, PEG attenuated neural cell death. Adult rats underwent 35-g clip compression SCI at C8 and were randomized postinjury to receive intravenous 30% PEG or sterile Ringer's lactate solution. Confocal microscopy and high-performance liquid chromatography of fluorescein-conjugated PEG permitted in vivo quantification of PEG concentrations in the injured and uninjured spinal cord. Western blot, immunohistochemistry, and terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining demonstrated that PEG reduced 200-kd neurofilament degradation and apoptotic cell death. Polyethylene glycol also promoted spinal cord tissue sparing based on retrograde axonal Fluoro-Gold tracing and morphometric histological assessment. Polyethylene glycol also promoted significant, although modest, neurobehavioral recovery after SCI. Collectively, these results indicate that PEG protects key axonal cytoskeletal proteins after SCI, and that the protection is associated with axonal preservation. The modest extent of locomotor recovery after treatment with PEG suggests, however, that this compound may notconfer sufficient neuroprotection to be used clinically as a single treatment.[1]

References

  1. Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury. Baptiste, D.C., Austin, J.W., Zhao, W., Nahirny, A., Sugita, S., Fehlings, M.G. J. Neuropathol. Exp. Neurol. (2009) [Pubmed]
 
WikiGenes - Universities