Cholinergic functioning in stimulant addiction: implications for medications development.
Acetylcholine, the first neurotransmitter discovered, participates in many CNS functions, including sensory and motor processing, sleep, nociception, mood, stress response, attention, arousal, memory, motivation and reward. These diverse cholinergic effects are mediated by nicotinic- and muscarinic-type cholinergic receptors (nAChR and mAChR, respectively). The goal of this review is to synthesize a growing literature that supports the potential role of acetylcholine as a treatment target for stimulant addiction. Acetylcholine interacts with the dopaminergic reward system in the ventral tegmental area, nucleus accumbens and prefrontal cortex. In the ventral tegmental area, both nAChR and mAChR stimulate the dopaminergic system. In the nucleus accumbens, cholinergic interneurons integrate cortical and subcortical information related to reward. In the prefrontal cortex, the cholinergic system contributes to the cognitive aspects of addiction. Preclinical studies support a facilitative role of nicotinic receptor agonists in the development of stimulant addiction. In contrast, nonselective muscarinic receptor agonists seem to have an inhibitory role. In human studies, acetylcholinesterase inhibitors, which increase synaptic acetylcholine levels, have shown promise for the treatment of stimulant addiction. Further studies testing the efficacy of cholinergic medications for stimulant addiction are warranted.[1]References
- Cholinergic functioning in stimulant addiction: implications for medications development. Sofuoglu, M., Mooney, M. CNS. Drugs (2009) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg