The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Kinetic advantage of the interaction between the fatty acid beta-oxidation enzymes and the complexes of the respiratory chain.

Respiration-linked oxidation of 3-hydroxybutyryl-CoA, crotonyl-CoA and saturated fatty acyl (C4, C8 and C14)-CoA esters was studied in different mitochondrial preparations. Oxidation of acyl-CoA esters was poor in intact mitochondria; however, it was significant, as well as, NAD+ and CoA-dependent in gently and in vigorously sonicated mitochondria. The respiration-linked oxidation of crotonyl-CoA and 3-hydroxybutyryl-CoA proceeded at much higher rates (over 700%) in gently disrupted mitochondria than in completely disrupted mitochondria. The redox dye-linked oxidation of crotonyl-CoA (with inhibited respiratory chain) was also higher in gently disrupted mitochondria (149%) than in disrupted ones. During the respiration-linked oxidation of 3-hydroxybutyryl-CoA the steady-state NADH concentrations in the reaction chamber were determined, and found to be 8 microM in gently sonicated and 15 microM in completely sonicated mitochondria in spite of the observation that the gently sonicated mitochondria oxidized the 3-hydroxybutyryl-CoA much faster than the completely sonicated mitochondria. The NAD(+)-dependence of 3-hydroxybutyryl-CoA oxidation showed that a much smaller NAD+ concentration was enough to half-saturate the reaction in gently disrupted mitochondria than in completely disrupted ones. Thus, these observations indicate the positive kinetic consequence of organization of beta-oxidation enzymes in situ. Respiration-linked oxidation of butyryl-, octanoyl- and palmitoyl-CoA was also studied and these CoA intermediates were oxidized at approx. 50% of the rate of crotonyl- and 3-hydroxybutyryl-CoA in the gently disrupted mitochondria. In vigorously disrupted mitochondria the oxidation rate of these saturated acyl-CoA intermediates was hardly detectable indicating that the connection between the acyl-CoA dehydrogenase and the respiratory chain had been disrupted.[1]

References

 
WikiGenes - Universities