The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Glycosaparaginase from human leukocytes. Inactivation and covalent modification with diazo-oxonorvaline.

The apparent active site of human leukocyte glycoasparaginase (N4-(beta-acetylglucosaminyl)-L-asparaginase EC has been studied by labeling with an asparagine analogue, 5-diazo-4-oxo-L-norvaline. Glycoasparaginase was purified 4,600-fold from human leukocytes with an overall recovery of 12%. The purified enzyme has a Km of 110 microM, a Vmax of 34 mumol x l-1 x min-1, and a specific activity of 2.2 units/mg protein with N4-(beta-N-acetylglucosaminyl)-L-asparagine as substrate. The carbohydrate content of the enzyme is 15%, and it exhibits a broad pH maximum between 7 and 9. The 88-kDa native enzyme is composed of 19-kDa light (L) chains and 25-kDa heavy (H) chains and it has a heterotetrameric structure of L2H2-type. The glycoasparaginase activity decreases rapidly and irreversibly in the presence of 5-diazo-4-oxo-L-norvaline. At any one concentration of the compound, the inactivation of the enzyme is pseudo-first-order with time. The inhibitory constant, K1, is 80 microM and the second-order rate constant 1.25 x 10(3) M-1 min-1 at pH 7. 5. The enzyme activity is competitively protected against this inactivation by its natural substrate, aspartylglucosamine, indicating that this inhibitor binds to the active site or very close to it. The covalent incorporation of [5-14C]diazo-4-oxo-L-norvaline paralleled the loss of the enzymatic activity and one inhibitor binding site was localized to each L-subunit of the heterotetrameric enzyme. Four peptides with the radioactive label were generated, purified by high performance liquid chromatography, and sequenced by Edman degradation. The sequences were overlapping and all contained the amino-terminal tripeptide of the L-chain. By mass spectrometry, the reacting group of 5-diazo-4-oxo-L-norvaline was characterized as 4-oxo-L-norvaline that was bound through an alpha-ketone ether linkage to the hydroxyl group of the amino-terminal amino acid threonine.[1]


  1. Glycosaparaginase from human leukocytes. Inactivation and covalent modification with diazo-oxonorvaline. Kaartinen, V., Williams, J.C., Tomich, J., Yates, J.R., Hood, L.E., Mononen, I. J. Biol. Chem. (1991) [Pubmed]
WikiGenes - Universities