A cold-sensitive mRNA splicing mutant is a member of the RNA helicase gene family.
We have isolated a cold-sensitive mutant of Saccharomyces cerevisiae in which the first step of mRNA splicing is inhibited. The growth and splicing defects are recessive and cosegregate, thus defining a single essential gene (PRP28). The wild-type PRP28 gene was cloned, and sequence analysis reveals extensive homology to a family of proteins that are thought to function as ATP-dependent RNA helicases. The cold sensitivity is caused by a glycine-to-glutamic acid change in a conserved sequence motif. Interestingly, double mutants containing conditional alleles of PRP28 and PRP24, which encodes a U6 snRNA-binding protein, are inviable. In addition, a suppressor of prp28-1 is a mutant allele of PRP8, which encodes a U5 protein, thus linking PRP28 with U5. These data are consistent with a scenario in which PRP28 acts to unwind the U4/U6 base-pairing interaction in the U4/U6/U5 snRNP, facilitating the first covalent step of splicing.[1]References
- A cold-sensitive mRNA splicing mutant is a member of the RNA helicase gene family. Strauss, E.J., Guthrie, C. Genes Dev. (1991) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg