The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Fas ligand gene expression is directly regulated by stress-inducible heat shock transcription factor-1.

Heat shock transcription factor-1 (HSF-1) is the primary stress responsive transcription factor that regulates expression of heat shock proteins (Hsps) in response to elevated temperature. We show that the transcriptional activity of HSF-1 can also directly mediate hyperthermia-induced Fas ligand (FasL) expression in activated T cells. We identify a conserved region within the human FasL promoter spanning from -276 to -236 upstream of the translational start site that contains two 15 bp non-identical adjacent HSF-1-binding sites or heat shock elements (HSEs) separated by 11 bp. Both the distal HSE (HSE1) (extending from -276 to -262) and the proximal HSE (HSE2) (spanning from -250 to -236) consist of two perfect and one imperfect nGAAn pentamers. We show the direct binding of HSF-1 to these elements and that mutation of these sites abrogates the ability of HSF-1 to bind and drive promoter activity. HSF-1 associates with these elements in a cooperative manner to mediate optimal promoter activity. We propose that the ability of HSF-1 to mediate stress-inducible expression of FasL extends its classical function as a regulator of Hsps to encompass a function for this transcription factor in the regulation of immune function and homeostasis.[1]

References

  1. Fas ligand gene expression is directly regulated by stress-inducible heat shock transcription factor-1. Bouchier-Hayes, L., McBride, S., van Geelen, C.M., Nance, S., Lewis, L.K., Pinkoski, M.J., Beere, H.M. Cell Death Differ. (2010) [Pubmed]
 
WikiGenes - Universities