The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Hypoxic conversion of SMAD7 function from an inhibitor into a promoter of cell invasion.

Smad7 is an inhibitor of the transforming growth factor-beta-activated signaling pathway. Under well-oxygenated conditions, Smad7 is a potent inhibitor of carcinoma cell invasion. Paradoxically, however, the expression of Smad7 is upregulated across several cancers and may promote cancer progression. Hypoxia, which is frequently met in solid tumors, is an enhancer of carcinoma cell invasion and cancer progression. Here, we report that hypoxia activates the expression of Smad7 in a hypoxia-inducible factor- and von Hippel-Lindau protein-dependent manner. As expected, in normoxia, the forced expression of Smad7 inhibited carcinoma cell invasion. In contrast with the normoxic condition, the inhibitory effect of Smad7 was lost under hypoxia. The block in carcinoma cell invasion by forced expression of Smad7 was released by hypoxia in two invasive carcinoma cell lines. Moreover, the noninvasive HaCaT keratinocytes become invasive upon simultaneous hypoxia and transforming growth factor-beta stimulus. The hypoxia-activated invasion was attenuated by inhibiting Smad7 expression by short interfering RNA. Finally, the increased Smad7 expression in human carcinomas correlated with hypoxic gene expression. The data provide evidence that hypoxia could convert Smad7 function from an invasion inhibitor into an activator of invasion. Furthermore, they might shed light as to why increased Smad7 expression is detected in cancers.[1]

References

  1. Hypoxic conversion of SMAD7 function from an inhibitor into a promoter of cell invasion. Heikkinen, P.T., Nummela, M., Jokilehto, T., Grenman, R., Kähäri, V.M., Jaakkola, P.M. Cancer Res. (2010) [Pubmed]
 
WikiGenes - Universities