The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay.

The kinetic properties and substrate specificity of two well-characterized peptidyl prolyl cis-trans isomerases (PPIases), cyclophilin and the FK-506 binding protein (FKBP), have been previously examined [Fischer, G., Bang, H., Berger, E., & Schellenberger, A. (1984) Biochim. Biophys. Acta 791, 87-97; Harrison, R.K., & Stein, R.L. (1990) Biochemistry 29, 1684-1689; Albers, M.W., Walsh, C.T., & Schreiber, S. L. (1990) J. Org. Chem. 55, 4984-4986]. The chymotrypsin-coupled enzymatic assay employed in these studies suffers from two serious shortcomings. Due to the low equilibrium population of the X-cis-Pro-Phe-pNA isomer (the PPIase substrate), in conjunction with the low solubility of p-nitroaniline generated by chymotrypsin hydrolysis, substrate concentrations in the saturating region are not experimentally attainable. Secondly, the uncatalyzed cis-trans isomerization obscures the interpretation of the initial velocity. As a result of these limitations, the steady-state kinetic parameters (Km,Kcat) have not been determined. Here we introduce an improved version of the spectrophotometric assay and report for the first time the Michaelis constants and turnover numbers for both PPIases with established substrates. The improvements in the experimental conditions originate in a medium-induced increase in the equilibrium population of the cis X-Pro conformer and in conducting the assay at 0 degrees C to suppress the uncatalyzed thermal isomerization. In addition, we present a rigorous mathematical model of the spectrophotometric progress curves that accounts for the contributions of the residual background rate.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

  1. Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Kofron, J.L., Kuzmic, P., Kishore, V., Colón-Bonilla, E., Rich, D.H. Biochemistry (1991) [Pubmed]
 
WikiGenes - Universities